Skip to main content

Agriculture Waste to Wealth: Unlocking the Hidden Potential

  • Chapter
  • First Online:
Integrated Waste Management

Abstract

Global population expansion has resulted in an acute demand for proliferated food production and distribution. As a result of this augmented food production, the agricultural sector has become a key waste producer too. Huge agricultural waste is produced annually through intense farming, cultivation, harvesting, and industrial processes. Agricultural wastes are classified as offcuts, crop residues, industrial wastes, food-related wastes, and animal wastes. Incineration of agricultural waste produces carbon dioxide and smoke which, when released into the environment, generates heat and causes global warming due to severe air pollution. Therefore, appropriate attention must be taken to decompose agricultural waste using an agricultural waste management strategy. Agriculture waste is reclaimed to produce enzymes, biofuels, vitamins, antioxidants, antibiotics, animal feed, and other useful compounds. Exploration of agricultural waste is a promising non-renewable resource alternative to support environmental feasibility and to address the increasing energy problem. This chapter discusses the right scientific approaches and methodologies for using agricultural waste as raw materials. Furthermore, we discuss numerous methods and techniques for obtaining valuable outputs and products from agricultural waste for a sustainable future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altieri MA (1991) Traditional farming in latin America. The Ecologist 21:93–96

    Google Scholar 

  2. Scarlat N, Dallemand JF, Monforti-Ferrario F, Viorel N (2015) The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environ Develop 15:3–34. https://doi.org/10.1016/j.envdev.2015.03.006

    Article  Google Scholar 

  3. Wattanasiriwech S (2022) nano-silica derived from power generation rice husk ash waste by precipitation. Ceram Silik:20–28. https://doi.org/10.13168/cs.2022.0056

  4. McCormick K, Kautto N (2013) The bioeconomy in Europe: an overview. Sustainability 5:2589–2608. https://doi.org/10.3390/su5062589

    Article  Google Scholar 

  5. Patil VC, Shastry V, Himabindu M, Ravikrishna R (2016) Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: part 2—well-to-wheels analysis. Energy 96:699–712. https://doi.org/10.1016/j.energy.2015.11.076

    Article  CAS  Google Scholar 

  6. Nanda S, Azargohar R, Dalai AK, Koziński JA (2015) An assessment on the sustainability of lignocellulosic biomass for biorefining. Renew Sustain Energy Rev 50:925–941. https://doi.org/10.1016/j.rser.2015.05.058

    Article  CAS  Google Scholar 

  7. Georgescu D, Brezoiu A-M, Mitran R, Berger D, Matei C, Negreanu-Pîrjol T (2017) Mesostructured silica–titania composites for improved oxytetracycline delivery systems. C R Chim 20:1017–1025. https://doi.org/10.1016/j.crci.2017.09.006

    Article  CAS  Google Scholar 

  8. Cadoche L, López GD (1989) Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biol Wastes 30:153–157. https://doi.org/10.1016/0269-7483(89)90069-4

    Article  CAS  Google Scholar 

  9. Ingale S, Joshi S, Gupte A (2014) Production of bioethanol using agricultural waste: banana pseudo stem. Braz J Microbiol 45:885–892. https://doi.org/10.1590/s1517-83822014000300018

    Article  CAS  Google Scholar 

  10. Mohanty AK, Misra M, Drzal LT (2002) Sustainable Bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26. https://doi.org/10.1023/a:1021013921916

    Article  CAS  Google Scholar 

  11. European Commission (2012) Rural development in the European Union. Statistical and Economic Information. Report 2012, European Union. http://ec.europa.eu/agriculture/dashboards/index_en.htm

  12. Zindani D, Kumar S, Maity SR, Bhowmik S (2020) Mechanical characterization of bio-epoxy green composites derived from sodium bicarbonate treated Punica granatum short fiber agro-waste. J Polym Environ 29:143–155. https://doi.org/10.1007/s10924-020-01868-8

    Article  CAS  Google Scholar 

  13. Bracco S, Calicioglu Ö, Juan MGS, Flammini A (2018) Assessing the contribution of bioeconomy to the total economy: a review of national frameworks. Sustainability 10:1698. https://doi.org/10.3390/su10061698

    Article  Google Scholar 

  14. Tan ECD, Lamers P (2021) Circular bioeconomy concepts—a perspective. Front Sustain 2. https://doi.org/10.3389/frsus.2021.701509

  15. Rahim NA, Harun NY, Saeed AAH, Bilad MR (2023) Green route synthesis of amorphous silica from oil palm decanter cake: from literature review to experiments. Indones J Sci Technol 8:141–156

    Article  Google Scholar 

  16. Permatasari N, Sucahya TN, Nandiyanto ABD (2016) Review: agricultural wastes as a source of silica material. Indones J Sci Technol 1:82. https://doi.org/10.17509/ijost.v1i1.2216

  17. Gundimeda H, Sukhdev P, Sinha RK, Sanyal S (2007) Natural resource accounting for Indian states—illustrating the case of forest resources. Ecol Econ 61:635–649

    Article  Google Scholar 

  18. Nag PK, Nag A (2004) Drudgery, accidents and injuries in Indian agriculture. Ind Health 42:149–162

    Article  Google Scholar 

  19. Rauh C (2019) EU politicization and policy initiatives of the European commission: the case of consumer policy. J Eur Publ Policy 26(3):344–365

    Article  Google Scholar 

  20. Reddy CS, Ghai R, Rashmi R, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Biores Technol 87:137–146. https://doi.org/10.1016/s0960-8524(02)00212-2

    Article  CAS  Google Scholar 

  21. Chinthapalli R, Skoczinski P, Michael C, Wolfgang B, Doris G, Käb H, Raschka A, Ravenstijn J (2019) Biobased building blocks and polymers—global capacities, production and trends, 2018–2023. Ind Biotechnol 15:237–241. https://doi.org/10.1089/ind.2019.29179.rch

    Article  Google Scholar 

  22. Ribašauskienė E, Volkov A, Morkūnas M, Žičkienė A, Dabkienė V, Štreimikienė D, Baležentis T (2024) Strategies for increasing agricultural viability, resilience and sustainability amid disruptive events: an expert-based analysis of relevance. J Bus Res 170:114328. https://doi.org/10.1016/j.jbusres.2023.114328

    Article  Google Scholar 

  23. Godara S, Toshniwal D, Parsad R, Bana RS, Singh DK, Bedi J, Jhajhria A, Dabas JPS, Marwaha S (2022) AgriMine: a deep learning integrated spatio-temporal analytics framework for diagnosing nationwide agricultural issues using farmers’ helpline data. Comput Electron Agric 201:107308. https://doi.org/10.1016/j.compag.2022.107308

    Article  Google Scholar 

  24. Bova S, Rosenthal Y, Liu Z, Godad SP, Mao Y (2021) Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589:548–553. https://doi.org/10.1038/s41586-020-03155-x

    Article  CAS  Google Scholar 

  25. Deshpande MV, Kumar N, Pillai D, Krishna VV, Jain M (2023) Greenhouse gas emissions from agricultural residue burning have increased by 75 % since 2011 across India. Sci Total Environ 904:166944. https://doi.org/10.1016/j.scitotenv.2023.166944

    Article  CAS  Google Scholar 

  26. Sangnark A, Noomhorm A (2004) Chemical, physical and baking properties of dietary fiber prepared from rice straw. Food Res Int 37:66–74

    Article  CAS  Google Scholar 

  27. Hadley S (2017) European commission final report: study on audience development—how to place audiences at the centre of cultural organisations. Cultural Trends 26:275–278. https://doi.org/10.1080/09548963.2017.1345739

    Article  Google Scholar 

  28. Dey B, Roy B, Datta S, Ustun TS (2023) Forecasting ethanol demand in India to meet future blending targets: a comparison of ARIMA and various regression models. Energy Rep 9:411–418. https://doi.org/10.1016/j.egyr.2022.11.038

    Article  Google Scholar 

  29. Alalwan HA, Alminshid AH, Aljaafari HA (2019) Promising evolution of biofuel generations subject review. Renew Energy Focus 28:127–139

    Article  Google Scholar 

  30. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27. https://doi.org/10.1016/j.renene.2011.06.045

    Article  CAS  Google Scholar 

  31. Adejumo IO, Adebiyi OA (2021) Agricultural solid wastes: causes, effects, and effective management. In: IntechOpen eBooks

    Google Scholar 

  32. Patel K, Shettigar RR, Misra NM (2017) Recent advance in silica production technologies from agricultural waste stream–review. J Adv Agric Technol 4:274–279. https://doi.org/10.18178/joaat.4.3.274-279

  33. Soltani N, Bahrami A, Pech-Canul MI, González L (2015) Review on the physicochemical treatments of rice husk for production of advanced materials. Chem Eng J 264:899–935. https://doi.org/10.1016/j.cej.2014.11.056

    Article  CAS  Google Scholar 

  34. Nzereogu PU, Omah AD, Ezema FI, Iwuoha EI, Nwanya AC (2023) Silica extraction from rice husk: comprehensive review and applications. Hybrid Adv 4:100111. https://doi.org/10.1016/j.hybadv.2023.100111

    Article  Google Scholar 

  35. Chen H, Wang W, Martin JC, Oliphant A, Doerr PA, Xu JF, DeBorn KM, Chen C, Sun L (2012) Extraction of lignocellulose and synthesis of porous silica nanoparticles from rice husks: a comprehensive utilization of rice husk biomass. ACS Sustain Chem Eng 1:254–259. https://doi.org/10.1021/sc300115r

    Article  CAS  Google Scholar 

  36. Nordin NH, Kaida N, Othman N, Akhir FNM, Hara H (2020) Reducing Food Waste: Strategies for household waste management to minimize the impact of climate change and contribute to Malaysia’s sustainable development. IOP Conf Ser 479:012035. https://doi.org/10.1088/1755-1315/479/1/012035

    Article  Google Scholar 

  37. Chen H, Wang F, Zhang C, Shi Y, Gao J, Yuan S (2010) Preparation of nano-silica materials: The concept from wheat straw. J Non-Cryst Solids 356:2781–2785. https://doi.org/10.1016/j.jnoncrysol.2010.09.051

    Article  CAS  Google Scholar 

  38. Liou T-H, Yang C (2011) Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash. Mater Sci Eng B 176:521–529. https://doi.org/10.1016/j.mseb.2011.01.007

    Article  CAS  Google Scholar 

  39. Abukhadra MR, Mohamed AS, El-Sherbeeny AM, El-Meligy MA (2020) Enhanced photocatalytic degradation of acephate pesticide over MCM-41/Co3O4 nanocomposite synthesized from rice husk silica gel and Peach leaves. J Hazard Mater 389:122129. https://doi.org/10.1016/j.jhazmat.2020.122129

    Article  CAS  Google Scholar 

  40. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742. https://doi.org/10.3390/ijms10093722

    Article  CAS  Google Scholar 

  41. De Moraes MJB, Moraes JCB, Tashima MM, Akasaki JL, Soriano L, Borrachero MV, Payá J (2019) Production of bamboo leaf ash by auto-combustion for pozzolanic and sustainable use in cementitious matrices. Constr Build Mater 208:369–380. https://doi.org/10.1016/j.conbuildmat.2019.03.007

    Article  CAS  Google Scholar 

  42. Norsuraya S, Fazlena H, Norhasyimi R (2016) Sugarcane bagasse as a renewable source of silica to synthesize Santa Barbara Amorphous-15 (SBA-15). Proc Eng 148:839–846. https://doi.org/10.1016/j.proeng.2016.06.627

    Article  CAS  Google Scholar 

  43. Bakar AHA, Carey CJN (2020) Extraction of silica from rice straw using alkaline hydrolysis pretreatment. IOP Conf Ser 778:012158. https://doi.org/10.1088/1757-899x/778/1/012158

  44. Ekwenna EB, Wang Y, Roskilly A (2023) The production of bio-silica from agro-industrial wastes leached and anaerobically digested rice straws. Bioresour Technol Rep 22:101452. https://doi.org/10.1016/j.biteb.2023.101452

    Article  CAS  Google Scholar 

  45. Skoczinski P, Carus M, Tweddle G, Ruiz P, de Guzman D, Ravenstijn J, Käb H, Hark N, Dammer L, Raschka A (2023) Bio-based building blocks and polymers: global capacities, production and trends 2022–2027. Ind Biotechnol 19(4):185–194

    CAS  Google Scholar 

  46. Estévez M, Vargas S, Castaño VM, Rodriguez R (2009) Silica nano-particles produced by worms through a bio-digestion process of rice husk. J Non-Cryst Solids 355:844–850. https://doi.org/10.1016/j.jnoncrysol.2009.04.011

  47. Kalapathy U, Proctor A, Shultz JL (2000) A simple method for production of pure silica from rice hull ash. Biores Technol 73:257–262. https://doi.org/10.1016/s0960-8524(99)00127-3

    Article  CAS  Google Scholar 

  48. Lee JH, Kwon JH, Lee JW, Lee HS, Chang JH, Sang BI (2017) Preparation of high purity silica originated from rice husks by chemically removing metallic impurities. J Ind Eng Chem 50:79–85

    Article  CAS  Google Scholar 

  49. Borrelli P, Robinson DA, Panagos P, Lugato E, Yang JE, Alewell C, Wuepper D, Montanarella L, Ballabio C (2020) Land use and climate change impacts on global soil erosion by water (2015–2070). Proc Natl Acad Sci USA 117:21994–22001. https://doi.org/10.1073/pnas.2001403117

    Article  CAS  Google Scholar 

  50. Ashter SA (2016) Types of biodegradable polymers. In: Elsevier eBooks, pp 81–151

    Google Scholar 

  51. Tezzo X, Aung HM, Belton B, Oosterveer P, Bush SR (2021) Consumption practices in transition: rural-urban migration and the food fish system in Myanmar. Geoforum 127:33–45. https://doi.org/10.1016/j.geoforum.2021.09.013

    Article  Google Scholar 

  52. Coppola D, Lauritano C, Esposito FP, Riccio G, Rizzo C, De Pascale D (2021) Fish waste: from problem to valuable resource. Mar Drugs 19:116. https://doi.org/10.3390/md19020116

    Article  CAS  Google Scholar 

  53. Hamdi S, Ghonaim GM, Sayed RRE, Rodríguez-Couto S, El-Ghany MNA (2022) Bioprocess of astaxanthin extraction from shrimp waste via the common microorganisms Saccharomyces cerevisiae and Lactobacillus acidophilus in comparison to the chemical method. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-02984-2

    Article  Google Scholar 

  54. Geethakarthi A (2021) Novel approaches towards sustainable management of an agricultural residue—the rice husk. Nat Environ Pollut Technol 20:349–355

    Article  CAS  Google Scholar 

  55. Zeidabadi ZA, Bakhtiari S, Abbaslou H, Ghanizadeh AR (2018) Synthesis, characterization and evaluation of biochar from agricultural waste biomass for use in building materials. Constr Build Mater 181:301–308. https://doi.org/10.1016/j.conbuildmat.2018.05.271

    Article  CAS  Google Scholar 

  56. Rahgozar MA, Saberian M (2018) Soil stabilization with non-conventional eco-friendly agricultural waste materials: an experimental study. Transp Geotech 14:52–60. https://doi.org/10.1016/j.trgeo.2017.09.004

    Article  Google Scholar 

  57. Ashour T (2017) Composites using agricultural wastes. In: Handbook of composites from renewable materials. Wiley, pp 197–240

    Google Scholar 

  58. Ashour T, Korjenić A, Korjenic S, Wu W (2015) Thermal conductivity of unfired earth bricks reinforced by agricultural wastes with cement and gypsum. Energy Build 104:139–146. https://doi.org/10.1016/j.enbuild.2015.07.016

    Article  Google Scholar 

  59. Brooks AL, Zhou H, Shen Z (2017) A monolithic “unibody” construction of structural assemblies through vacuum-assisted processing of agro-waste fibrous composites. Constr Build Mater 153:886–896. https://doi.org/10.1016/j.conbuildmat.2017.07.082

    Article  Google Scholar 

  60. Jarabo R, Monte MC, Fuente E, Santos SF, Negro C (2013) Corn stalk from agricultural residue used as reinforcement fiber in fiber-cement production. Ind Crops Prod 43:832–839. https://doi.org/10.1016/j.indcrop.2012.08.034

    Article  CAS  Google Scholar 

  61. Dungani R, Karina M, Subyakto S, Sulaeman A, Hermawan D, Hadiyane A (2015) Agricultural Waste Fibers towards Sustainability and Advanced utilization: a review. Asian J Plant Sci 15:42–55. https://doi.org/10.3923/ajps.2016.42.55

    Article  CAS  Google Scholar 

  62. Duque-Acevedo M, Lancellotti I, Andreola F et al (2022) Management of agricultural waste biomass as raw material for the construction sector: an analysis of sustainable and circular alternatives. Environ Sci Eur 34:70

    Google Scholar 

  63. Abdurrahman MI, Chaki S, Saini G (2020) Stubble burning: effects on health & environment, regulations and management practices. Environ Adv 2:100011. https://doi.org/10.1016/j.envadv.2020.100011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kaushik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahu, N., Shweta, S., Garg, P., Berry, E., Kumar, R., Kaushik, S. (2024). Agriculture Waste to Wealth: Unlocking the Hidden Potential. In: Gupta, A., Kumar, R., Kumar, V. (eds) Integrated Waste Management. Springer, Singapore. https://doi.org/10.1007/978-981-97-0823-9_4

Download citation

Publish with us

Policies and ethics