Skip to main content

Development of Technologies for Municipal Solid Waste Management: Current Status, Challenges, and Future Perspectives

  • Chapter
  • First Online:
Integrated Waste Management

Abstract

The advancement of municipal solid waste (MSW) management technologies is indispensable to confront the escalating issues related to waste disposal and environmental sustainability. The chapter commences by defining and underscoring the significance of MSW management in addressing the mounting waste generation and its environmental consequences. It offers a succinct overview of existing MSW management practices, encompassing landfilling, incineration, recycling, and composting. The ongoing status of these technologies is deliberated upon, spotlighting their advantages and constraints. Diverse case studies from various regions are presented to showcase successful technology implementations. Furthermore, the chapter delves into the challenges facing MSW management, including amplified waste generation, constrained landfill capacity, environmental apprehensions, recycling complexities, and deficiencies in composting infrastructure and awareness. These challenges prompt an exploration of emerging technologies and prospective avenues in MSW management, encompassing waste-to-energy, anaerobic digestion, plasma gasification, and advanced recycling techniques. The chapter underscores the criticality of adopting sustainable and efficient technologies, concurrently emphasizing the necessity for collaborative endeavors involving governments, industries, and communities. This chapter's insights contribute substantially to the progression of MSW management practices toward a more sustainable and ecologically conscious approach. Ultimately, it accentuates the importance of policy support, funding, and public participation in propelling forthcoming advancements in MSW management. It underscores the need for collaboration among governments, industries, and communities to effectively address impending waste management challenges and realize efficient, eco-friendly practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Shafy HI, Mansour MSM (2018) Solid waste issue: sources, composition, disposal, recycling, and valorization. Egypt J Pet 27:1275–1290. https://doi.org/10.1016/j.ejpe.2018.07.003

    Article  Google Scholar 

  2. Ally B, Norkhadijah S, Ismail S (2014) Zanzibar Solid Waste 1:5–19

    Google Scholar 

  3. Joshi R, Ahmed S (2016) Status and challenges of municipal solid waste management in India: a review. Cogent Environ Sci 2:1139434

    Article  Google Scholar 

  4. Ferronato N, Torretta V (2019) Waste mismanagement in developing countries: a review of global issues. Int J Environ Res Public Health 16. https://doi.org/10.3390/ijerph16061060

  5. Mesjasz-Lech A (2014) Municipal waste management in context of sustainable urban development. Proc Soc Behav Sci 151:244–256. https://doi.org/10.1016/j.sbspro.2014.10.023

    Article  Google Scholar 

  6. Kumar S, Smith SR, Fowler G, Velis C, Kumar SJ, Arya S, Rena Kumar R, Cheeseman C (2017) Challenges and opportunities associated with waste management in India. R Soc Open Sci 4. https://doi.org/10.1098/rsos.160764

  7. Mir IS, Cheema PPS, Singh SP (2021) Implementation analysis of solid waste management in Ludhiana city of Punjab. Environ Challenges 2. https://doi.org/10.1016/j.envc.2021.100023

  8. Yukalang N, Clarke B, Ross K (2017) Barriers to effective municipal solid waste management in a rapidly urbanizing area in Thailand. Int J Environ Res Public Health 14:9–14. https://doi.org/10.3390/ijerph14091013

    Article  Google Scholar 

  9. Kumar A, Agrawal A (2020) Recent trends in solid waste management status, challenges, and potential for the future Indian cities—a review. Curr Res Environ Sustain 2. https://doi.org/10.1016/j.crsust.2020.100011

  10. Chand Malav L, Yadav KK, Gupta N, Kumar S, Sharma GK, Krishnan S, Rezania S, Kamyab H, Pham QB, Yadav S, Bhattacharyya S, Yadav VK, Bach QV (2020) A review on municipal solid waste as a renewable source for waste-to-energy project in India: current practices, challenges, and future opportunities. J Clean Prod 277. https://doi.org/10.1016/j.jclepro.2020.123227

  11. Mani S, Singh S (2016) Sustainable municipal solid waste management in India: a policy agenda. Proc Environ Sci 35:150–157. https://doi.org/10.1016/j.proenv.2016.07.064

    Article  Google Scholar 

  12. Pheakdey DV, Quan NV, Khanh TD, Xuan TD (2022) Challenges and priorities of municipal solid waste management in Cambodia. Int J Environ Res Public Health 19. https://doi.org/10.3390/ijerph19148458

  13. Balasubramanian M (2018) Municipal solid waste management in India: Status, problems and challenges. Int J Environ Waste Manag 21:253–268. https://doi.org/10.1504/IJEWM.2018.093435

    Article  CAS  Google Scholar 

  14. Radwan N, Mangi SA (2019) Municipal solid waste management practices and opportunities in Saudi Arabia. Eng Technol Appl Sci Res 9:4516–4519. https://doi.org/10.48084/etasr.2870

  15. Gour AA, Singh SK (2022) Solid waste management in India: a state-of-the-art review. Environ Eng Res 28:220249. https://doi.org/10.4491/eer.2022.249

    Article  Google Scholar 

  16. Sharholy M, Ahmad K, Mahmood G, Trivedi RC (2008) Municipal solid waste management in Indian cities—a review. Waste Manag 28:459–467. https://doi.org/10.1016/j.wasman.2007.02.008

    Article  Google Scholar 

  17. Gupta S, Mohan K, Prasad R, Gupta S, Kansal A (1998) Solid waste management in India: options and opportunities. Resour Conserv Recycl 24:137–154. https://doi.org/10.1016/S0921-3449(98)00033-0

    Article  Google Scholar 

  18. Ziraba AK, Haregu TN, Mberu B (2016) A review and framework for understanding the potential impact of poor solid waste management on health in developing countries. Arch Public Heal 74:1–11. https://doi.org/10.1186/s13690-016-0166-4

    Article  Google Scholar 

  19. Viel JF, Arveux P, Baverel J, Cahn JY (2000) Soft-tissue sarcoma and non-Hodgkin’s lymphoma clusters around a municipal solid waste incinerator with high dioxin emission levels. Am J Epidemiol 152:13–19. https://doi.org/10.1093/aje/152.1.13

    Article  CAS  Google Scholar 

  20. Giusti L (2009) A review of waste management practices and their impact on human health. Waste Manag 29:2227–2239. https://doi.org/10.1016/j.wasman.2009.03.028

    Article  CAS  Google Scholar 

  21. Hussain M, Butt AR, Uzma F, Ahmed R, Irshad S, Rehman A, Yousaf B (2020) A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ Monit Assess 192. https://doi.org/10.1007/s10661-019-7956-4

  22. Weitz KA, Thorneloe SA, Nishtala SR, Yarkosky S, Zannes M (2002) The impact of municipal solid waste management on greenhouse gas emissions in the United States. J Air Waste Manag Assoc 52:1000–1011. https://doi.org/10.1080/10473289.2002.10470843

    Article  CAS  Google Scholar 

  23. Ryu C (2010) Potential of municipal solid waste for renewable energy production and reduction of greenhouse gas emissions in South Korea. J Air Waste Manag Assoc 60:176–183. https://doi.org/10.3155/1047-3289.60.2.176

    Article  CAS  Google Scholar 

  24. Cheng H, Hu Y (2010) Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China. Bioresour Technol 101:3816–3824. https://doi.org/10.1016/j.biortech.2010.01.040

    Article  CAS  Google Scholar 

  25. Hunt C (1996) Child waste pickers in India: the occupation and its health risks. Environ Urban 8:111–114. https://doi.org/10.1177/095624789600800209

    Article  Google Scholar 

  26. Sepúlveda A, Schluep M, Renaud FG, Streicher M, Kuehr R, Hagelüken C, Gerecke AC (2010) A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: examples from China and India. Environ Impact Assess Rev 30:28–41. https://doi.org/10.1016/j.eiar.2009.04.001

    Article  Google Scholar 

  27. Williams PT (2005) 6.2 Pyrolysis

    Google Scholar 

  28. Moore CJ, Moore SL, Leecaster MK, Weisberg SB (2001) A comparison of plastic and plankton in the North Pacific Central Gyre. Mar Pollut Bull 42:1297–1300. https://doi.org/10.1016/S0025-326X(01)00114-X

    Article  CAS  Google Scholar 

  29. Kara Lavender L (2010) Plastic accumulation in the North. Science 329:1185–1188

    Article  Google Scholar 

  30. Cruvinel VRN, Marques CP, Cardoso V, Novaes MRCG, Araújo WN, Angulo-Tuesta A, Escalda PMF, Galato D, Brito P, Da Silva EN (2019) Health conditions and occupational risks in a novel group: waste pickers in the largest open garbage dump in Latin America. BMC Public Health 19:1–15. https://doi.org/10.1186/s12889-019-6879-x

    Article  Google Scholar 

  31. Gregory MR (2009) Environmental implications of plastic debris in marine settings-entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos Trans R Soc B Biol Sci 364:2013–2025. https://doi.org/10.1098/rstb.2008.0265

  32. Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44:842–852. https://doi.org/10.1016/S0025-326X(02)00220-5

    Article  CAS  Google Scholar 

  33. Smith M, Love DC, Rochman CM, Neff RA (2018) Microplastics in seafood and the implications for human health. Curr Environ Heal Rep 5:375–386. https://doi.org/10.1007/s40572-018-0206-z

    Article  CAS  Google Scholar 

  34. Siddiqua A, Hahladakis JN, Al-Attiya WAKA (2022) An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environ Sci Pollut Res 29:58514–58536. https://doi.org/10.1007/s11356-022-21578-z

    Article  Google Scholar 

  35. Zhu H, Stadnyk A, Béland M, Seto P (2008) Co-production of hydrogen and methane from potato waste using a two-stage anaerobic digestion process. Bioresour Technol 99:5078–5084. https://doi.org/10.1016/j.biortech.2007.08.083

    Article  CAS  Google Scholar 

  36. Agarwal A, Singhmar A, Kulshrestha M, Mittal AK (2005) Municipal solid waste recycling and associated markets in Delhi, India. Resour Conserv Recycl 44:73–90. https://doi.org/10.1016/j.resconrec.2004.09.007

    Article  Google Scholar 

  37. Troschinetz AM, Mihelcic JR (2009) Sustainable recycling of municipal solid waste in developing countries. Waste Manag 29:915–923. https://doi.org/10.1016/j.wasman.2008.04.016

    Article  CAS  Google Scholar 

  38. Hayami Y, Dikshit AK, Mishra SN (2006) Waste pickers and collectors in Delhi: poverty and environment in an urban informal sector. J Dev Stud 42:41–69. https://doi.org/10.1080/00220380500356662

    Article  Google Scholar 

  39. Sharma KD, Jain S (2019) Overview of municipal solid waste generation, composition, and management in India. J Environ Eng 145. https://doi.org/10.1061/(asce)ee.1943-7870.0001490

  40. Alao MA, Popoola OM, Ayodele TR (2022) Waste-to-energy nexus: an overview of technologies and implementation for sustainable development. Clean Energy Syst 3:100034. https://doi.org/10.1016/j.cles.2022.100034

    Article  Google Scholar 

  41. Mukherjee C, Denney J, Mbonimpa EG, Slagley J, Bhowmik R (2020) A review on municipal solid waste-to-energy trends in the USA. Renew Sustain Energy Rev 119:109512. https://doi.org/10.1016/j.rser.2019.109512

    Article  CAS  Google Scholar 

  42. Seltenrich N (2016) Emerging waste-to-energy technologies. Environ Health Perspect 124:106–111

    Article  Google Scholar 

  43. Annepu RK (2012) Sustainable solid waste management in India. MS Diss. https://doi.org/10.1007/978-981-4451-73-4

    Article  Google Scholar 

  44. Parkin GF, Speece RE, Yang CHJ, Kocher WM (1983) Response of methane fermentation systems to industrial toxicants. J Water Pollut Control Fed 55:44–53

    CAS  Google Scholar 

  45. Ghosh S, Pohland FG (1974) Kinetics of substrate assimilation and product formation in anaerobic digestion. J Water Pollut Control Fed 46:748–759

    CAS  Google Scholar 

  46. Chandra R, Kumar V (2015) Environmental waste management, pp 385–412 (2015)

    Google Scholar 

  47. Ohlson LO, Larsson B, Svardsudd K, Welin L, Eriksson H, Wilhelmsen L, Bjorntorp P, Tibblin G (1985) The influence of body fat distribution on the incidence of diabetes mellitus. Diabetes 34:1055–1058

    Article  CAS  Google Scholar 

  48. Dupla JC, Canou J, Gouvenot D (2004) An advanced experimental set-up for studying a monodirectional grout injection process. Proc Inst Civil Eng Ground Improv 8:91–99. https://doi.org/10.1680/grim.8.3.91.41117

    Article  Google Scholar 

  49. Fang B, Yu J, Chen Z, Osman AI, Farghali M, Ihara I, Hamza EH, Rooney DW, Yap PS (2023) Artificial intelligence for waste management in smart cities: a review. Springer International Publishing

    Google Scholar 

  50. Pardini K, Rodrigues JJPC, Diallo O, Das AK, de Albuquerque VHC, Kozlov SA (2020) A smart waste management solution geared towards citizens. Sensors (Switzerland) 20:1–15. https://doi.org/10.3390/s20082380

    Article  Google Scholar 

  51. Alvarado U, Juanicorena A, Adin I, Sedano B, Gutiérrez I, de Nó J (2012) Energy harvesting technologies for low-power electronics. Trans Emerg TelecommunTechnol 23:728–741. https://doi.org/10.1002/ett

  52. Watteyne T, Vilajosana X, Kerkez B, Chraim F, Weekly K, Wang Q, Glaser S, Pister K (2012) OpenWSN: a standards-based low-power wireless development environment. Trans. Emerg. Telecommun. Technol. 23:480–493. https://doi.org/10.1002/ett

    Article  Google Scholar 

  53. Chaves LWF, Decker C (2010) A survey on organic smart labels for the Internet-of-Things. In: 7th International conference networked sensor system (INSS 2010), pp 161–164. https://doi.org/10.1109/INSS.2010.5573467

  54. Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2014) Sensing as a service model for smart cities supported by Internet of Things. Trans Emerg Telecommun Technol 25:81–93. https://doi.org/10.1002/ett

    Article  Google Scholar 

  55. Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100:5478–5484. https://doi.org/10.1016/j.biortech.2008.12.046

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seema Rani or Ramesh Chandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devi, R., Singh, A.K., Kumar, A., Kumar, R., Rani, S., Chandra, R. (2024). Development of Technologies for Municipal Solid Waste Management: Current Status, Challenges, and Future Perspectives. In: Gupta, A., Kumar, R., Kumar, V. (eds) Integrated Waste Management. Springer, Singapore. https://doi.org/10.1007/978-981-97-0823-9_3

Download citation

Publish with us

Policies and ethics