Skip to main content

Emerging Applications of Photocatalysis in Wastewater Treatment

  • Chapter
  • First Online:
Integrated Waste Management

Abstract

Wastewater treatment has emerged as a global issue due to rapid industrialization and population growth. The conventional methods for wastewater treatment are outdating mainly due to the generation of secondary pollutants by them and hence the focus of current research is on the development of more sustainable methods to tackle this problem. Photocatalysis has emerged as an attractive alternative due to the green and sustainable nature of the underlying process as it utilizes natural sunlight ‘the abundant source of energy’ for its reactions. This chapter mainly focuses on the treatment of wastewater by the photocatalysis process. In this chapter, the basic mechanism of the photocatalytic wastewater treatment process and strategies for the design and development of photocatalysts have been discussed in detail followed by the discussion of several reports on the degradation of oil-based pollutants, dyes, pharmaceutical pollutants, and pesticides and herbicides present in the wastewater. Finally, a summary and future outlooks are also provided at the end to guide the researchers in designing low-cost and efficient photocatalysts for wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar A, Kumar A, Krishnan V (2020) Perovskite oxide based materials for energy and environment-oriented photocatalysis. ACS Catal 10:10253–10315

    Article  CAS  Google Scholar 

  2. Chen Y, Su F, Xie H, Wang R, Ding C, Huang J, Xu Y, Ye L (2021) One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution. Chem Eng J 404:126498

    Article  CAS  Google Scholar 

  3. Kumari P, Kumar S, Singhal A (2020) Chapter 29–Magnetic nanoparticle-based nanocontainers for water treatment. In: Nguyen-Tri P, Do T-O, Nguyen TA (eds) Smart nanocontainers. Elsevier, pp 487–498

    Chapter  Google Scholar 

  4. Liu W, Zhang D, Wang R, Zhang Z, Qiu S (2022) 2D/2D interface engineering promotes charge separation of Mo2C/g-C3N4 nanojunction photocatalysts for efficient photocatalytic hydrogen evolution. ACS Appl Mater Interfaces 14:31782–31791

    Article  CAS  Google Scholar 

  5. Yan W, Xu Y, Hao S, He Z, Wang L, Wei Q, Xu J, Tang H (2022) Promoting charge separation in hollow-structured C/MoS2@ ZnIn2S4/Co3O4 photocatalysts via double heterojunctions for enhanced photocatalytic hydrogen evolution. Inorg Chem 61:4725–4734

    Article  CAS  Google Scholar 

  6. Yang Q, Yu L, Zhao X, Wang Y, Zhu H, Zhang Y (2022) Highly stable γ-NiOOH/ZnCdS photocatalyst for efficient hydrogen evolution. Int J Hydrogen Energy 47:27516–27526

    Article  CAS  Google Scholar 

  7. Mohan H, Ha GH, Oh HS, Kim G, Shin T (2022) Zinc iron selenide nanoflowers anchored g-C3N4 as advanced catalyst for photocatalytic water splitting and dye degradation. Chemosphere 307:135937

    Article  CAS  Google Scholar 

  8. Li H, Xiao J, Vequizo JJM, Hisatomi T, Nakabayashi M, Pan Z, Shibata N, Yamakata A, Takata T, Domen K (2022) One-step excitation overall water splitting over a modified Mg-doped BaTaO2N photocatalyst. ACS Catal 12:10179–10185

    Article  CAS  Google Scholar 

  9. Kumar A, Kumar S, Bahuguna A, Kumar A, Sharma V, Krishnan V (2017) Recyclable, bifunctional composites of perovskite type N-CaTiO 3 and reduced graphene oxide as an efficient adsorptive photocatalyst for environmental remediation, Materials Chemistry. Frontiers 1:2391–2404

    CAS  Google Scholar 

  10. Mohan H, Vadivel S, Muthukumar Sathya P, Fujii M, Ha GH, Kim G, Shin T (2022) Visible-light photocatalytic water splitting and norfloxacin degradation by reduced graphene oxide-coupled MnON nanospheres. ACS Appl Energy Mater 5:12851–12859

    Google Scholar 

  11. Abu-Sari SM, Daud WMAW, Patah MFA, Ang BC (2022) A review on synthesis, modification method, and challenges of light-driven H2 evolution using g-C3N4-based photocatalyst. Adv Coll Interface Sci 307:102722

    Article  CAS  Google Scholar 

  12. Kundu S, Polshettiwar V (2018) Hydrothermal crystallization of nano-titanium dioxide for enhanced photocatalytic hydrogen generation. ChemPhotoChem 2:796–800

    Article  CAS  Google Scholar 

  13. Verma R, Tyagi R, Voora VK, Polshettiwar V (2023) Black gold-based “antenna–reactor” to activate non-plasmonic nickel: photocatalytic hydrodechlorination and hydrogenation reactions. ACS Catal 13:7395–7406

    Article  CAS  Google Scholar 

  14. Koe WS, Lee JW, Chong WC, Pang YL, Sim LC (2020) An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environ Sci Pollut Res 27:2522–2565

    Article  CAS  Google Scholar 

  15. Debnath B, Singh S, Hossain SM, Krishnamurthy S, Polshettiwar V, Ogale S (2022) Visible light-driven highly selective CO2 reduction to CH4 using potassium-doped g-C3N5

    Google Scholar 

  16. Chen D, Cheng Y, Zhou N, Chen P, Wang Y, Li K, Huo S, Cheng P, Peng P, Zhang R (2020) Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review. J Clean Prod 268:121725

    Article  CAS  Google Scholar 

  17. Ghosh U, Pal A (2019) Graphitic carbon nitride based Z scheme photocatalysts: design considerations, synthesis, characterization and applications. J Ind Eng Chem 79:383–408

    Article  CAS  Google Scholar 

  18. Kumar A, Sharma M, Sheoran S, Jaiswal S, Patra A, Bhattacharya S, Krishnan V (2023) Tailoring defects in SrTiO 3 by one step nanoarchitectonics for realizing photocatalytic nitrogen fixation in pure water. Nanoscale 15:11667–11680

    Article  CAS  Google Scholar 

  19. Kumar A, Kumar M, Rao VN, Shankar MV, Bhattacharya S, Krishnan V (2021) Unraveling the structural and morphological stability of oxygen vacancy engineered leaf-templated CaTiO 3 towards photocatalytic H 2 evolution and N 2 fixation reactions. J Mater Chem A 9:17006–17018

    Article  CAS  Google Scholar 

  20. James AL, Lenka M, Pandey N, Ojha A, Kumar A, Saraswat R, Thareja P, Krishnan V, Jasuja K (2020) Processable dispersions of photocatalytically active nanosheets derived from titanium diboride: self assembly into hydrogels and paper-like macrostructures. Nanoscale 12:17121–17131

    Article  CAS  Google Scholar 

  21. Wei Z, Liu J, Shangguan W (2020) A review on photocatalysis in antibiotic wastewater: pollutant degradation and hydrogen production. Chin J Catal 41:1440–1450

    Article  CAS  Google Scholar 

  22. Sharma S, Dutta V, Raizada P, Hosseini-Bandegharaei A, Singh P, Nguyen V-H (2021) Tailoring cadmium sulfide-based photocatalytic nanomaterials for water decontamination: a review. Environ Chem Lett 19:271–306

    Article  CAS  Google Scholar 

  23. Kumar A, Krishnan V (2021) Vacancy engineering in semiconductor photocatalysts: implications in hydrogen evolution and nitrogen fixation applications. Adv Func Mater 31:2009807

    Article  CAS  Google Scholar 

  24. Sharma M, Kumar A, Krishnan V (2022) Influence of oxygen vacancy defects on Aurivillius phase layered perovskite oxides of bismuth towards photocatalytic environmental remediation. Nanotechnology 33:275702

    Article  CAS  Google Scholar 

  25. Ren G, Han H, Wang Y, Liu S, Zhao J, Meng X, Li Z (2021) Recent advances of photocatalytic application in water treatment: a review. Nanomaterials 11:1804

    Article  CAS  Google Scholar 

  26. Hemasankari S, Priyadharshini S, Thangaraju D, Sathiyanarayanamoorthi V, Al Sdran N, Shkir M (2023) Effect of neodymium (Nd) doping on the photocatalytic organic dye degradation performance of sol-gel synthesized CoFe2O4 self-assembled microstructures. Phys B Condensed Matter 660:414870

    Google Scholar 

  27. Mudhoo A, Paliya S, Goswami P, Singh M, Lofrano G, Carotenuto M, Carraturo F, Libralato G, Guida M, Usman M (2020) Fabrication, functionalization and performance of doped photocatalysts for dye degradation and mineralization: a review. Environ Chem Lett 18:1825–1903

    Article  CAS  Google Scholar 

  28. Keerthana S, Yuvakkumar R, Kumar PS, Ravi G, Vo D-VN, Velauthapillai D (2021) Influence of tin (Sn) doping on Co3O4 for enhanced photocatalytic dye degradation. Chemosphere 277:130325

    Article  CAS  Google Scholar 

  29. Ren Y, Zeng D, Ong W-J (2019) Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: a review. Chin J Catal 40:289–319

    Article  CAS  Google Scholar 

  30. Bai S, Zhang N, Gao C, Xiong Y (2018) Defect engineering in photocatalytic materials. Nano Energy 53:296–336

    Article  CAS  Google Scholar 

  31. Xiong J, Di J, Xia J, Zhu W, Li H (2018) Surface defect engineering in 2D nanomaterials for photocatalysis. Adv Func Mater 28:1801983

    Article  Google Scholar 

  32. Kumar A, Kashyap S, Sharma M, Krishnan V (2022) Tuning the surface and optical properties of graphitic carbon nitride by incorporation of alkali metals (Na, K, Cs and Rb): effect on photocatalytic removal of organic pollutants. Chemosphere 287:131988

    Article  CAS  Google Scholar 

  33. Qiang T, Chen L, Xia Y, Qin X (2021) Dual modified MoS2/SnS2 photocatalyst with Z-scheme heterojunction and vacancies defects to achieve a superior performance in Cr (VI) reduction and dyes degradation. J Clean Prod 291:125213

    Article  CAS  Google Scholar 

  34. Raizada P, Soni V, Kumar A, Singh P, Khan AAP, Asiri AM, Thakur VK, Nguyen V-H (2021) Surface defect engineering of metal oxides photocatalyst for energy application and water treatment. J Materiom 7:388–418

    Article  Google Scholar 

  35. Maarisetty D, Baral SS (2020) Defect engineering in photocatalysis: formation, chemistry, optoelectronics, and interface studies. J Mater Chem A 8:18560–18604

    Article  CAS  Google Scholar 

  36. Miao Z, Wang G, Zhang X, Dong X (2020) Oxygen vacancies modified TiO2/Ti3C2 derived from MXenes for enhanced photocatalytic degradation of organic pollutants: the crucial role of oxygen vacancy to schottky junction. Appl Surf Sci 528:146929

    Article  CAS  Google Scholar 

  37. Lv X, Dong J, Yuan B, Sun T, Liang Y, Ji C, Bai L, Yang H, Wei D, Wang W, Yang L (2023) 2D/2D MoS2/ZnIn2S4 heterojunction for simultaneous realization of solar water evaporation and photocatalytic dye degradation. J Alloy Compd 965:171382

    Article  CAS  Google Scholar 

  38. Mishra P, Patnaik S, Parida K (2019) An overview of recent progress on noble metal modified magnetic Fe 3 O 4 for photocatalytic pollutant degradation and H 2 evolution. Catal Sci Technol 9:916–941

    Article  CAS  Google Scholar 

  39. Wang P, Cai W, Yu F, Zhou P, Lin M, Lin C, Lin T, Gao M, Zhao C, Li X, Wu X (2023) Bi0·5Na0·5TiO3/ZnO Z-scheme heterojunction for piezo-photocatalytic water remediation: mechanical energy harvesting and energy band configuration. Chemosphere 338:139548

    Article  CAS  Google Scholar 

  40. Kumar A, Choudhary P, Chhabra T, Kaur H, Kumar A, Qamar M, Krishnan V (2023) Frontier nanoarchitectonics of graphitic carbon nitride based plasmonic photocatalysts and photoelectrocatalysts for energy, environment and organic reactions. Mater Chem Front

    Google Scholar 

  41. Kumar A, Choudhary P, Kumar A, Camargo PH, Krishnan V (2022) Recent advances in plasmonic photocatalysis based on TiO2 and noble metal nanoparticles for energy conversion, environmental remediation, and organic synthesis. Small 18:2101638

    Article  CAS  Google Scholar 

  42. Nur AS, Sultana M, Mondal A, Islam S, Robel FN, Islam A, Sumi MSA (2022) A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV–vis irradiation. J Water Proc Eng 47:102728

    Article  Google Scholar 

  43. Saini D, Garg AK, Dalal C, Anand SR, Sonkar SK, Sonker AK, Westman G (2022) Visible-light-promoted photocatalytic applications of carbon dots: a review. ACS Appl Nano Mater 5:3087–3109

    Article  CAS  Google Scholar 

  44. He S, Chen Y, Li X, Zeng L, Zhu M (2022) Heterogeneous photocatalytic activation of persulfate for the removal of organic contaminants in water: a critical review. ACS ES&T Eng 2:527–546

    Article  CAS  Google Scholar 

  45. Showman M, El-Aziz AMA, Yahya R (2022) Efficient photocatalytic degradation of petroleum oil spills in seawater using a metal-organic framework (MOF). Sci Rep 12:22445

    Article  CAS  Google Scholar 

  46. Mahmoud MA, Tayeb AM, Abdel-Wahab MZ, Ahmed ZA, Bakather OY, Eldoma MA, Abouatiaa AF (2023) Degradation of oily effluents using immobilized photocatalyst: laboratory experimentation and plant design. Alex Eng J 65:295–305

    Article  Google Scholar 

  47. Agyei-Tuffour B, Gbogbo S, Dodoo-Arhin D, Damoah LN, Efavi JK, Yaya A, Nyankson E (2020) Photocatalytic degradation of fractionated crude oil: potential application in oil spill remediation. Cogent Eng 7:1744944

    Article  Google Scholar 

  48. Tetteh E, Rathilal S, Naidoo D (2020) Photocatalytic degradation of oily waste and phenol from a local South Africa oil refinery wastewater using response methodology. Sci Rep 10:1–12

    Article  Google Scholar 

  49. Kumari N, Chhabra T, Kumar A, Krishnan V (2021) Bioderived carbon supported bismuth molybdate nanocomposites as bifunctional catalysts for removal of organic pollutants: adsorption and photocatalytic studies. Mater Lett 302:130455

    Article  CAS  Google Scholar 

  50. Chand H, Kumar A, Krishnan V (2021) Borophene and boron-based nanosheets: recent advances in synthesis strategies and applications in the field of environment and energy. Adv Mater Interfaces 8:2100045

    Article  CAS  Google Scholar 

  51. Bobde P, Sharma A, Panchal D, Sharma A, Patel R, Dhodapkar R, Pal S (2023) Layered double hydroxides (LDHs)-based photocatalysts for dye degradation: a review. Int J Environ Sci Technol 20:5733–5752

    Article  CAS  Google Scholar 

  52. Kumar A, Kumar S, Krishnan V (2019) Perovskite-based materials for photocatalytic environmental remediation. In: Inamuddin SG, Kumar A, Lichtfouse E, Asiri AM (eds) Materials and technology, nanophotocatalysis and environmental applications. Springer International Publishing, Cham, pp 139–165

    Google Scholar 

  53. Chand H, Kumar A, Bhumla P, Naik BR, Balakrishnan V, Bhattacharya S, Krishnan V (2022) Scalable production of ultrathin boron nanosheets from a low-cost precursor. Adv Mater Interfaces 9:2200508

    Article  CAS  Google Scholar 

  54. Chinnasamy C, Perumal N, Choubey A, Rajendran S (2023) Recent advancements in MXene-based nanocomposites as photocatalysts for hazardous pollutant degradation-A review. Environ Res 116459

    Google Scholar 

  55. Yang X, Ye Y, Sun J, Li Z, Ping J, Sun X (2022) Recent advances in g-C3N4-based photocatalysts for pollutant degradation and bacterial disinfection: design strategies, mechanisms, and applications. Small 18:2105089

    Article  CAS  Google Scholar 

  56. Sharma V, Kumar A, Krishnan V (2020) 12–Two-dimensional MXene-based heterostructures for photocatalysis. In: Mustansar Hussain C, Mishra AK (eds) Handbook of smart photocatalytic materials. Elsevier, pp 247–267

    Google Scholar 

  57. Li X, Wu J, An S, Li K, Zhang J, Pei M, Song C, Guo X (2023) Ultrathin crystalline carbon nitride nanosheets for highly efficient photocatalytic pollutant removal and hydrogen production. ACS Appl Nano Mater 6:11601–11611

    Article  CAS  Google Scholar 

  58. Kumar A, Singla Y, Sharma M, Bhardwaj A, Krishnan V (2022) Two dimensional S-scheme Bi2WO6–TiO2–Ti3C2 nanocomposites for efficient degradation of organic pollutants under natural sunlight. Chemosphere 308:136212

    Article  CAS  Google Scholar 

  59. Kumari P, Kumar S, Gupta S, Mishra A, Kumar A (2018) Efficacious and selective oxidation of atrazine with hydrogen peroxide catalyzed by magnetite nanoparticles: influence of reaction media. ChemistrySelect 3:2135–2139

    Article  CAS  Google Scholar 

  60. Li T, Abdelhaleem A, Chu W, Pu S, Qi F, Zou J (2021) S-doped TiO2 photocatalyst for visible LED mediated oxone activation: kinetics and mechanism study for the photocatalytic degradation of pyrimethanil fungicide. Chem Eng J 411:128450

    Article  CAS  Google Scholar 

  61. Santiago DE, Araña J, González-Díaz O, Alemán-Dominguez ME, Acosta-Dacal AC, Fernandez-Rodríguez C, Pérez-Peña J, Doña-Rodríguez JM (2014) Effect of inorganic ions on the photocatalytic treatment of agro-industrial wastewaters containing imazalil. Appl Catal B 156–157:284–292

    Article  Google Scholar 

  62. Lamkhanter H, Frindy S, Park Y, Sillanpӓӓ M, Mountacer H (2021) Photocatalytic degradation of fungicide difenoconazole via photo-Fento process usingα-Fe2O3. Mater Chem Phys 267:124713

    Article  CAS  Google Scholar 

  63. Kumar S, Alka T, Saxena J, Bansal C, Kumari P (2020) Visible light-assisted photodegradation by silver tungstate-modified magnetite nanocomposite material for enhanced mineralization of organic water contaminants. Appl Nanosci 10:1555–1569

    Google Scholar 

  64. Alikhani N, Farhadian M, Goshadrou A, Tangestaninejad S, Eskandari P (2021) Photocatalytic degradation and adsorption of herbicide 2, 4-dichlorophenoxyacetic acid from aqueous solution using TiO2/BiOBr/Bi2S3 nanostructure stabilized on the activated carbon under visible light. Environ Nanotechnol Monitor Manag 15:100415

    Article  CAS  Google Scholar 

  65. Vinoth Kumar J, Karthik R, Chen S-M, Natarajan K, Karuppiah C, Yang C-C, Muthuraj V (2018) 3D flower-like gadolinium molybdate catalyst for efficient detection and degradation of organophosphate pesticide (fenitrothion). ACS Appl Mater Interf 10:15652–15664

    Google Scholar 

  66. Sharma V, Kumar A, Kumar A, Krishnan V (2022) Enhanced photocatalytic activity of two dimensional ternary nanocomposites of ZnO–Bi2WO6–Ti3C2 MXene under natural sunlight irradiation. Chemosphere 287:132119

    Article  CAS  Google Scholar 

  67. Wang J, Tang L, Zeng G, Deng Y, Liu Y, Wang L, Zhou Y, Guo Z, Wang J, Zhang C (2017) Atomic scale g-C3N4/Bi2WO6 2D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation. Appl Catal B 209:285–294

    Article  CAS  Google Scholar 

  68. Dong S, Ding X, Guo T, Yue X, Han X, Sun J (2017) Self-assembled hollow sphere shaped Bi2WO6/RGO composites for efficient sunlight-driven photocatalytic degradation of organic pollutants. Chem Eng J 316:778–789

    Article  CAS  Google Scholar 

  69. Lahmar H, Benamira M, Douafer S, Messaadia L, Boudjerda A, Trari M (2020) Photocatalytic degradation of methyl orange on the novel hetero-system La2NiO4/ZnO under solar light. Chem Phys Lett 742:137132

    Article  CAS  Google Scholar 

  70. Kumar A, Schuerings C, Kumar S, Kumar A, Krishnan V (2018) Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation. Beilstein J Nanotechnol 9:671–685

    Article  CAS  Google Scholar 

  71. Qu Z, Liu Z, Wu A, Piao C, Li S, Wang J, Song Y (2020) Preparation of a coated Z-scheme and H-type SrTiO3/(BiFeO3@ ZnS) composite photocatalyst and application in degradation of 2, 4-dichlorophenol with simultaneous conversion of Cr (VI). Sep Purif Technol 240:116653

    Article  CAS  Google Scholar 

  72. Jaffari ZH, Lam S-M, Sin J-C, Zeng H, Mohamed AR (2020) Magnetically recoverable Pd-loaded BiFeO3 microcomposite with enhanced visible light photocatalytic performance for pollutant, bacterial and fungal elimination. Sep Purif Technol 236:116195

    Article  CAS  Google Scholar 

  73. Shi W, Shu K, Huang X, Ren H, Li M, Chen F, Guo F (2020) Enhancement of visible‐light photocatalytic degradation performance over nitrogen‐deficient g‐C3N4/KNbO3 heterojunction photocatalyst. J Chem Technol Biotechnol

    Google Scholar 

  74. Sanad MF, Shalan AE, Bazid SM, Abdelbasir SM (2018) Pollutant degradation of different organic dyes using the photocatalytic activity of ZnO@ ZnS nanocomposite materials. J Environ Chem Eng 6:3981–3990

    Article  CAS  Google Scholar 

  75. Wang L, Li Z, Chen J, Huang Y, Zhang H, Qiu H (2019) Enhanced photocatalytic degradation of methyl orange by porous graphene/ZnO nanocomposite. Environ Pollut 249:801–811

    Article  CAS  Google Scholar 

  76. Prabhu S, Megala S, Harish S, Navaneethan M, Maadeswaran P, Sohila S, Ramesh R (2019) Enhanced photocatalytic activities of ZnO dumbbell/reduced graphene oxide nanocomposites for degradation of organic pollutants via efficient charge separation pathway. Appl Surf Sci 487:1279–1288

    Article  CAS  Google Scholar 

  77. Prabhu Y, Sreedhar B, Pal U (2019) Achieving enhanced photocatalytic activity of ZnO supported on MWCNTs towards degradation of pollutants under visible light. Mater Today Proc 8:419–426

    Article  CAS  Google Scholar 

  78. Meng X, Zhang Z (2017) Bi2MoO6 co-modified by reduced graphene oxide and palladium (Pd2+ and Pd0) with enhanced photocatalytic decomposition of phenol. Appl Catal B 209:383–393

    Article  CAS  Google Scholar 

  79. Chen Y, Wang P, Liang Y, Zhao M, Jiang Y, Wang G, Zou P, Zeng J, Zhang Y, Wang Y (2019) Fabrication of a three-dimensional porous Z-scheme silver/silver bromide/graphitic carbon nitride@ nitrogen-doped graphene aerogel with enhanced visible-light photocatalytic and antibacterial activities. J Colloid Interface Sci 536:389–398

    Article  CAS  Google Scholar 

  80. Zhao R, Sun X, Jin Y, Han J, Wang L, Liu F (2019) Au/Pd/g-C3N4 nanocomposites for photocatalytic degradation of tetracycline hydrochloride. J Mater Sci 54:5445–5456

    Article  CAS  Google Scholar 

  81. Ghasemi Z, Abdi V, Sourinejad I (2019) Single-step biosynthesis of Ag/AgCl@ TiO 2 plasmonic nanocomposite with enhanced visible light photoactivity through aqueous leaf extract of a mangrove tree, Appl Nanosci 1–10

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Sardar Patel University Mandi for providing the necessary facilities to accomplish this work. A.K. thanks DST-SERB (project no. SUR/2022/003038) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manjula Sharma or Ashish Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thakur, A., Kumar, S., Kumari, P., Sharma, M., Kumar, A. (2024). Emerging Applications of Photocatalysis in Wastewater Treatment. In: Gupta, A., Kumar, R., Kumar, V. (eds) Integrated Waste Management. Springer, Singapore. https://doi.org/10.1007/978-981-97-0823-9_13

Download citation

Publish with us

Policies and ethics