Skip to main content

New Zealand’s Growing Space Sector: A Technological and Science Perspective

  • Chapter
  • First Online:
Ascending to Space

Part of the book series: Space Law and Policy ((SLP))

  • 56 Accesses

Abstract

New Zealand’s space sector is in a phase of rapid growth, catalysed by the success of Rocket Lab. The increasing activity in space science, engineering and related topics suggests that interest and appetite in these fields has been long latent or under-supported. It is generally held that increased investment in the local space sector is likely to generate rewards in the form of valuable intellectual property, increased high dollar-to-weight export products, high-value services and an increased standing in international academic and educational forums. The opportunities and benefits to New Zealand as a space-active nation, however, must be balanced against the risks and cost. This balancing act is itself an opportunity: one in which New Zealand demonstrates its commitment to both the international community as a responsible actor in space based on the extant norms in that community, while also ensuring that the particular values of New Zealand society are reflected in our activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Synonymous with orbital mechanics.

  2. 2.

    https://spoc.auckland.ac.nz/.

  3. 3.

    https://www.canterbury.ac.nz/news/2021/launching-a-space-lab-into-orbit.html.

  4. 4.

    Outer Space and High-altitude Activities Act 2017, 16(2).

  5. 5.

    Some groups are part sponsored by a university department. UC Aerospace (formerly the University of Canterbury Rocketry Club), for example, is sponsored by the Department of Mechanical Engineering at the University of Canterbury.

  6. 6.

    https://www.kiwisat.org.nz/.

  7. 7.

    https://nz.usembassy.gov/nasa-internships/.

  8. 8.

    https://www.mbie.govt.nz/science-and-technology/space/nasa-internships/.

  9. 9.

    https://zenno.space/.

  10. 10.

    https://www.tec.govt.nz/funding/funding-and-performance/funding/fund-finder/entrepreneurial-universities/.

  11. 11.

    The name of the Institute was subsequently changed to Te Pūnaha Ātea Space Institute.

  12. 12.

    https://space.auckland.ac.nz/home/facilities/national-satellite-test-facility-nstf/.

  13. 13.

    https://www.christchurch.space/.

  14. 14.

    For an introduction to this topic, the reader can refer to the resources managed by the UN Office for Outer Space Affairs (United Nations Publications, 2018). Briefly, New Zealand has agreed to the Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies (also known as the Outer Space Treaty); the Agreement on the Rescue of Astronauts, the Return of Astronauts and the Return of Objects Launched into Outer Space (also known as the Rescue Agreement); and the Convention on International Liability for Damage Caused by Space Objects (also known as the Liability Convention). These agreements were made in 1967, 1969 and 1974, respectively. Most recently, New Zealand acceded to the Convention on the Registration of Objects Launched into Outer Space (the Registration Convention), in 2018.

  15. 15.

    The principles of the Accords relate to civil space activities and regulate activities not just on the surfaces of the Moon or Mars: “[t]hese activities may take place on the Moon, Mars, comets, and asteroids, including their surfaces and subsurfaces, as well as in orbit of the Moon or Mars, in the Lagrangian points for the Earth-Moon system, and in transit between these celestial bodies and locations” (Artemis, 2020).

  16. 16.

    See also the related secondary legislation, the Outer Space and High-Altitude Activities (Licences and Permits) Regulations 2017 and the Outer Space and High-Altitude Activities (Definition of High-altitude Vehicle) Regulations 2017 (New Zealand Government, 2017b, c).

  17. 17.

    https://www.mbie.govt.nz/science-and-technology/space/about-us/.

  18. 18.

    An interesting tension arising from the Act and discussed in the review is that there is currently no definition of “outer space” in the OSHAA Act. In contrast, a definition of “high-altitude” is given. This, in turn, raises some issues, including, for instance, whether or not there is clarity on the relationship between launch licences and high-altitude licences issued under the OSHAA Act.

  19. 19.

    https://www.afrl.af.mil/AFOSR/.

  20. 20.

    https://www.mbie.govt.nz/about/news/new-zealanddlr-frontier-joint-research-programme-funding-announced/.

  21. 21.

    https://www.beehive.govt.nz/release/aerospace-sector-reach-new-heights-govt-strategy-and-funding.

  22. 22.

    National Aeronautics and Space Administration, National Science Foundation, Department of Energy, Air Force Office of Scientific Research.

References

  • Andrews, J., Watry, K., & Brown, K. (2011). Nanosat deorbit and recovery system to enable new missions. https://api.semanticscholar.org/CorpusID:86518846

  • APSS. (2022). Auckland Programme for Space Systems. https://apss.space.auckland.ac.nz/. [Online; accessed 19 Sept 2022].

  • Armellin, R. (2021). Collision avoidance maneuver optimization with a multiple-impulse convex formulation. Acta Astronautica, 186, 347–362.

    Article  Google Scholar 

  • Artemis. (2020). The Artemis Accords: Principles for cooperation in the civil exploration and use of the moon, mars, comets, and asteroids for peaceful purposes. https://www.nasa.gov/specials/artemis-accords/img/Artemis-Accords-signed-13Oct2020.pdf. [Online; accessed: 13 Sept 2022].

  • Baker, K., & Jansson, D. (1994). Space satellites from the world’s garage—The story of AMSAT. In Proceedings of National Aerospace and Electronics Conference (NAECON’94), (vol. 2, pp 1174–1181).

    Google Scholar 

  • Balkenhohl, J., Glowacki, J., Rattenbury, N., & Cater, J. (2022). A review of low-power applied-field magnetoplasmadynamic thruster research and formulation of an improved semi-empirical performance model. In 37th international electric propulsion conference.

    Google Scholar 

  • Benmergui, J. S., Rohrschneider, R., Omara, M., Gautam, R., Chan Miller, C., Sun, K., Franklin, J. E., Hamburg, S., Preetz, B., & Wofsy, S. C. (2020). Science planning for the MethaneSAT mission. AGU Fall Meeting Abstracts, 2020, A015–A011.

    Google Scholar 

  • Bennet, F., Ferguson, K., Grant, K., Kruzins, E., Rattenbury, N., & Schediwy, S. (2020). An Australia/New Zealand optical communications ground station network for next generation satellite communications. In Free-space laser communications XXXII (Vol. 11272, p. 1127202). SPIE.

    Google Scholar 

  • Berry, T., Olatunji, J. R., & Acheson, C. (2021). Modelling the thermal effects of tumbling on CubeSats equipped with HTS coils. In TENCON 2021–2021 IEEE Region 10 Conference (TENCON), pp. 157–162.

    Google Scholar 

  • Blosser, M., Chen, R., Schmidt, I., Dorsey, J., Poteet, C., & Bird, R. (2002). Advanced metallic thermal protection system development. In 40th AIAA aerospace sciences meeting & exhibit, pp. 504.

    Google Scholar 

  • Bond, I. A., Udalski, A., Jaroszyński, M., Rattenbury, N. J., Paczyński, B., Soszyński, I., et al. (2004). OGLE 2003-BLG-235/MOA 2003-BLG-53: A planetary microlensing event. The Astrophysical Journal, 606(2), L155.

    Article  Google Scholar 

  • Bothmer, V., & Daglis, I. A. (2007). Space weather: Physics and effects. Springer Science & Business Media.

    Book  Google Scholar 

  • Boyce, R. (2022). Observations from across the Tasman. Available upon request.

    Google Scholar 

  • Bryson, H., Sültrop, H. P., Buchanan, G., Hann, C., Snowdon, M., Rao, A., Slee, A., Fanning, K., Wright, D., McVicar, J., Clark, B., Harris, G., & Chen, X. Q. (2016). Vertical wind tunnel for prediction of rocket flight dynamics. Aerospace, 3(2), 10.

    Article  Google Scholar 

  • Caldarelli, A., Filleul, F., Charles, C., Rattenbury, N., & Cater, J. (2021). Pre- liminary measurements of a magnetic steering system for RF plasma thruster applications. In AIAA Propulsion and Energy 2021 Forum, pp 3401.

    Google Scholar 

  • Caldarelli, A., Filleul, F., Charles, C., Boswell, R., Rattenbury, N., & Cater, J. (2022). Radial characterization of an ion beam in a deflected magnetic nozzle. In 37th international electric propulsion conference.

    Google Scholar 

  • Campbell, K. A., Lynne, B. Y., Handley, K. M., Jordan, S., Farmer, J. D., Guido, D. M., Foucher, F., Turner, S., & Perry, R. S. (2015). Tracing biosignature preservation of geothermally silicified microbial textures into the geological record. Astrobiology, 15(10), 858–882.

    Article  Google Scholar 

  • Carandente, V., & Savino, R. (2014). New concepts of deployable de-orbit and re-entry systems for CubeSat miniaturized satellites. Recent Patents on Engineering, 8(1), 2–12.

    Article  Google Scholar 

  • Charles, C., Tsifakis, D., Bennet, A., Boswell, R., Braun, W., Rivas-Davila, J., Takahashi, K., Ando, A., Dudas, E., Benidar, A., et al. (2019). Lab to launch. In Proceedings of the International Astronautical Congress, IAC, vol. 2019, pp IAC–19 C4 4 1 x55179. International Astronautical Federation, IAF.

    Google Scholar 

  • Chen, Y.-K. (2021). Ad Meliora: Space microbial research for the benefit of humanity (Master’s thesis). The University of Auckland, Auckland, New Zealand.

    Google Scholar 

  • Cirkovic, E., Committee, S. O., et al. (2021). IAU dark and quiet skies. UNOOSA, NoirLabs, SATCON2, International Law Working Group Report.

    Google Scholar 

  • Daglis, I. A., Chang, L. C., Dasso, S., Gopalswamy, N., Khabarova, O. V., Kilpua, E., Lopez, R., Marsh, D., Matthes, K., Nandy, D., et al. (2021). Predictability of variable solar–terrestrial coupling. In Annales Geophysicae (Vol. 39, pp. 1013–1035). Copernicus GmbH.

    Google Scholar 

  • De Zanet, G., Viquerat, A., & Aglietti, G. (2022). Dynamic interferometric measurements of thermally induced deformations on telescope based on high-strain composite tape-springs. Thin-Walled Structures, 179, 109657.

    Article  Google Scholar 

  • Deloitte. (2019). New Zealand space sector: Its value, scope and structure. https://www.mbie.govt.nz/assets/new-zealand-space-sector-its-value-scope-and-structure.pdf. [Online, accessed 17 May 2023].

  • Dhopade, P. (2021). Bringing eco-design to space missions. https://www.rnz.co.nz/national/programmes/ninetonoon/audio/2018823870/bringing-eco-design-to-space-missions. [Online; accessed 29 Aug 2022].

  • Djokic, T., Van Kranendonk, M., Campbell, K., et al. (2017). Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nature Communications, 8, 15263.

    Article  Google Scholar 

  • Engelen, S., Oever, M., Mahapatra, P., Sundaramoorthy, P., Gill, E., Meijer, R., & Verhoeven, C. (2012). NanoSAR-case study of synthetic aperture radar for nano-satellites.

    Google Scholar 

  • Feder, T. (2022). Ballooning satellite populations in low Earth orbit portend changes for science and society. Physics Today, 75(4), 25–28.

    Article  Google Scholar 

  • Filleul, F., Charles, C., Boswell, R., Rattenbury, N., Cater, J., & Sutherland, O. (2019). Radio frequency microdischarge neutraliser. In 36th international electric propulsion conference.

    Google Scholar 

  • Filleul, F., Caldarelli, A., Charles, C., Boswell, R., Rattenbury, N., & Cater, J. (2021). Characterization of a new variable magnetic field linear plasma device. Physics of Plasmas, 28(12), 123514.

    Article  Google Scholar 

  • Filleul, F., Caldarelli, A., Boswell, R., Charles, C., Rattenbury, N., & Cater, J. (2022). Ion magnetization effects on plasma generation in a magnetic nozzle RF device. In 37th international electric propulsion conference.

    Google Scholar 

  • Fletcher, S. E. M., & Schaefer, H. (2019). Rising methane: A new climate challenge. Science, 364(6444), 932–933.

    Article  Google Scholar 

  • Goebel, D. M., & Katz, I. (2008). Fundamentals of electric propulsion: Ion and hall thrusters. Wiley.

    Book  Google Scholar 

  • Graham, D. R., Rattenbury, N. J., & Cater, J. E. (2019). Mission feasibility from trajectory optimization and the state of space systems research at The University of Auckland. In AAS/AIAA Astrodynamics Specialist Conference.

    Google Scholar 

  • Graham, D., Englander, J., Rattenbury, N., & Cater, J. (2022). Low-thrust trajectory design from lunar rideshare to venus capture. Journal of Spacecraft and Rockets, 59(6). https://doi.org/10.2514/1.A35282

  • Hann, C. E., Snowdon, M., Rao, A., Tang, R., Korevaar, A., Skinner, G., Keall, A., Chen, X., & Chase, J. G. (2010). Rocket roll dynamics and disturbance – Minimal modelling and system identification. In 2010 11th International Conference on Control Automation Robotics & Vision (pp. 1736–1741).

    Chapter  Google Scholar 

  • Hann, C., Snowdon, M., Rao, A., Winn, O., Wongvanich, N., & Chen, X. (2012). Minimal modelling approach to describe turbulent rocket roll dynamics in a vertical wind tunnel. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 226(9), 1042–1060.

    Article  Google Scholar 

  • Henry, C. (2017). All-electric satellites halfway to becoming half of all satellites. Space News, Pocket Ventures LLC.

    Google Scholar 

  • Hickman, S., Weddell, S., & Clare, R. (2019). Image correction with curvature and geometric wavefront sensors in simulation and on-sky. In 2019 international conference on image and vision computing New Zealand (IVCNZ), pp. 1–6.

    Google Scholar 

  • Hickman, S., Muruganandan, V. A., Weddell, S., & Clare, R. (2020). Image metrics for deconvolution of satellites in low earth orbit. In 2020 35th international conference on image and vision computing New Zealand (IVCNZ), pp. 1–6.

    Google Scholar 

  • Honeth, M., Yalagach, A., & Aglietti, G. (2022). Wire driven mechanisms for deployable components for optical payloads. SSC22-WKVI, pp. 1–9.

    Google Scholar 

  • Hsu, K.-L. (2012). Two paradigms of the developmental state approach, with special reference to South Korea and Taiwan. American Journal of Chinese Studies, 19(1), 13–28. American Association of Chinese Studies.

    Google Scholar 

  • Johnson, C. (1982). MITI and the Japanese miracle: The growth of industrial policy, 1925–1975. Stanford University Press.

    Book  Google Scholar 

  • Krebs, G. (2022). Gunter’s space page. https://space.skyrocket.de/index.html. Accessed: 15 June 2022.

  • Krecke, J., Villano, M., Ustalli, N., Austin, A. C. M., Cater, J. E., & Krieger, G. (2021a). Design of SmallSat SAR for dedicated New Zealand applications. In EUSAR 2021; 13th European conference on synthetic aperture radar, pp. 1–5.

    Google Scholar 

  • Krecke, J., Villano, M., Ustalli, N., Austin, A. C. M., Cater, J. E., & Krieger, G. (2021b). Detecting ships in the New Zealand exclusive economic zone: Requirements for a dedicated SmallSat SAR mission. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 3162–3169.

    Article  Google Scholar 

  • Kruglyakov, M., Kuvshinov, A., & Marshalko, E. (2022). Real-time 3-D modeling of the ground electric field due to space weather events. A concept and its validation. Space Weather, 20(4). https://doi.org/10.1029/2021SW002906

  • Laverick, M., Moller, D., Ruf, C., Musko, S., O’Brien, A., Linnabary, R., Thomas, W., Seal, C., & Wharton, Y. (2020). Integrating the OpenSky network into GNSS-R climate monitoring research. Multidisciplinary Digital Publishing Institute Proceedings, 59(1), 11.

    Google Scholar 

  • Linnabary, R., O’Brien, A., Ruf, C., Musko, S., & Moller, D. (2020). Analysis of GNSS-R coverage by a regional aircraft fleet. In IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, pp. 6270–6273.

    Google Scholar 

  • Long, N. (2021). High temperature superconductors in space-realising the value of an enabling technology. 43rd COSPAR Scientific Assembly. Held 28 January–4 February, 43:72.

    Google Scholar 

  • Makarov, K. (2015). Design of attitude determination and control system for KIWISAT amateur satellite (MEng thesis). Massey University.

    Google Scholar 

  • MBIE. (2021a). MethaneSAT space mission. https://www.mbie.govt.nz/science-and-technology/space/space-related-opportunities-in-new-zealand/methanesat-mission/. [Online; accessed 29 Aug 2022].

  • MBIE. (2021b). Project Tāwhaki – A unique partnership for Kaitorete. https://www.mbie.govt.nz/science-and-technology/science-and-innovation/international-opportunities/new-zealand-r-d/innovative-partnerships/project-tawhaki/. [Online; accessed 29 Aug 2022].

  • MBIE (2022). International research projects. https://www.mbie.govt.nz/science-and-technology/space/nzspacetalk/international-research-projects/. [Online; accessed: 29 Aug 2022].

  • McPherson, A., & DeLucas, L. J. (2015). Microgravity protein crystallization. npj Microgravity, 1, 15010.

    Article  Google Scholar 

  • Moller, D., Ruf, C., Linnabary, R., O’Brien, A., & Musko, S. (2021). Operational airborne GNSS-R aboard air New Zealand domestic aircraft. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, pp. 1284–1287.

    Google Scholar 

  • Mumma, M. J. (2012). The search for life on Mars. Origin of life Gordon Research Conference. Galveston, TX. https://ntrs.nasa.gov/citations/20120003707

  • Muruganandan, V. A., Lambert, A., Clare, R., & Weddell, S. (2022). Improving the resolution of low earth orbit objects by multi-exposure imaging and deconvolution.

    Google Scholar 

  • Nath, N., & Aglietti, G. S. (2022). Study the effect of tri-axis vibration testing over single-axis vibration testing on a satellite. In 2022 IEEE Aerospace Conference (AERO), pp. 1–10.

    Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine. (2021). Pathways to discovery in astronomy and astrophysics for the 2020s. https://doi.org/10.17226/26141

  • National Committee for Space and Radio Science. (2022). Australia in space: A decadal plan for Australian space science 2021–2030. Australian Academy of Science. https://www.science.org.au/files/userfiles/support/reports-and-plans/2022/australia-in-space-a-decadal-plan-for-australian-space-science-2021-2030.pdf. [Online; accessed 22 May 2023].

  • New Zealand Government. (2017a). Outer Space and High-altitude Activities Act 2017. https://www.legislation.govt.nz/act/public/2017/0029/latest/DLM6966461.html. [Online; accessed: 12 Sept 2022].

  • New Zealand Government. (2017b). Outer Space and High-altitude Activities (Definition of High-altitude Vehicle) Regulations 2017. https://www.legislation.govt.nz/regulation/public/2017/0251/latest/DLM7416501.html. [Online; accessed: 12 Sept 2022].

  • New Zealand Government. (2017c). Outer Space and High-altitude Activities (Licences and Permits) Regulations 2017. https://www.legislation.govt.nz/regulation/public/2017/0250/latest/DLM7364101.html. [Online; accessed: 12 Sept 2022].

  • New Zealand Government. (2018). Research, science and innovation system performance report. https://www.mbie.govt.nz/dmsdocument/1499-research-science-and-innovation-system-performance-report-2018. [Online; accessed: 12 Sept 2022].

  • New Zealand Government. (2022a). Developing the New Zealand aerospace strategy. https://www.mbie.govt.nz/dmsdocument/23715-developing-the-aotearoa-new-zealand-aerospace-strategy-pdf. [Online; accessed: 19 Sept 2022].

  • New Zealand Government. (2022b). New Zealand space policy review consultation. https://www.mbie.govt.nz/dmsdocument/23736-new-zealand-space-policy-review-consultation-document. [Online; accessed: 19 Sept 2022].

  • New Zealand Government. (2022c). Statutory Review of the Outer Space and High-altitude Activities Act 2017. https://www.mbie.govt.nz/assets/report-on-the-statutory-review-of-the-oshaa-2017.pdf. [Online; accessed: 12 Sept 2022].

  • Nieke, P., Chopovda, V., Schleutker, T., Gülhan, A., Rattenbury, N., & Cater, J. (2023). Additively manufactured titanium alloy sandwich structures for thermal protection. In AIAA Scitech Forum. Submitted.

    Google Scholar 

  • Olatunji, J. R., Acheson, C., Szmigiel, M., Wimbush, S. C., & Long, N. J. (2021a). Heat load calculations on an HTS coil integrated into a small satellite during a sun-synchronous low earth orbit. Journal of Physics: Conference Series, 1975(1), 012029.

    Google Scholar 

  • Olatunji, J. R., Strickland, N. M., Goddard Winchester, M. R., Kinefuchi, K., Ichihara, D., Long, N. J., & Wimbush, S. C. (2021b). Modelling of a 1 T high-temperature superconducting applied field module for a magnetoplasmadynamic thruster. In TENCON 2021–2021 IEEE Region 10 Conference (TENCON), pp. 173–178.

    Google Scholar 

  • Olatunji, J., Acheson, C., Szmigiel, M., Wimbush, S., & Long, N. (2022). Orbital and thermal modelling of a 3U CubeSat equipped with a high-temperature superconducting coil. Acta Astronautica, 190, 413–429.

    Article  Google Scholar 

  • Pirovano, L., Santeramo, D. A., Armellin, R., Di Lizia, P., & Wittig, A. (2020). Probabilistic data association: The orbit set. Celestial Mechanics and Dynamical Astronomy, 132(2), 1–27.

    Article  Google Scholar 

  • Poland, O. (2019). University of Auckland space cadets taking their mission seriously. https://www.auckland.ac.nz/en/news/2019/11/25/space-cadets.html. [Online; accessed 29 Aug 2022].

  • Powell, A. (2023). Buying crucial time in climate change fight. The Harvard Gazette. https://news.harvard.edu/gazette/story/2023/03/methane-tracking-satellite-may-be-fastest-way-to-slow-climate-change/. [Online; accessed 25 May 2023].

  • Pozza, M. A., & Dennerley, J. A. (2022). Risk management in Outer Space Activities: An Australian and New Zealand perspective (Space law and policy series). Springer.

    Book  Google Scholar 

  • Radio New Zealand. (2018). NZ Students on mission to sort space junk. https://www.rnz.co.nz/national/programmes/ninetonoon/audio/2018668448/nz-students-on-mission-to-sort-space-junk. [Online; accessed 22 May 2023].

  • Rattenbury, N. (2021). New Zealand optical communications ground station feasibility study. Technical report, The University of Auckland.

    Google Scholar 

  • Rocket Lab. (2017). Rocket Lab Electron ‘Its a Test’ flight successfully makes it to space. https://www.rocketlabusa.com/updates/rocket-lab-successfully-makes-it-to-space-2/. [Online; accessed 27 May 2023].

  • Rocket Lab. (2018). It’s business time. https://www.rocketlabusa.com/missions/completed-missions/its-business-time/. [Online; accessed 27 May 2023].

  • Rocket Lab. (2020a). Return to sender. https://www.rocketlabusa.com/missions/completed-missions/flight-16/. [Online; accessed 17 May 2023].

  • Rocket Lab. (2020b). Rocket Lab to launch most diverse mission yet. https://www.rocketlabusa.com/updates/rocket-lab-to-launch-most-diverse-mission-yet/. [Online; accessed 17 May 2023].

  • Rohrschneider, R. R., Wofsy, S., Franklin, J. E., Benmergui, J., Soto, J., & Davis, S. B. (2021). The MethaneSAT mission.

    Google Scholar 

  • Rueda, A., Sedlmeir, F., Collodo, M. C., Vogl, U., Stiller, B., Schunk, G., Strekalov, D. V., Marquardt, C., Fink, J. M., Painter, O., et al. (2016). Efficient microwave to optical photon conversion: An electro-optical realization. Optica, 3(6), 597–604.

    Article  Google Scholar 

  • Rueda, A., Sedlmeir, F., Kumari, M., Leuchs, G., & Schwefel, H. G. (2019). Resonant electro-optic frequency comb. Nature, 568(7752), 378–381.

    Article  Google Scholar 

  • Ruff, S. W., Campbell, K. A., Van Kranendonk, M. J., Rice, M. S., & Farmer, J. D. (2020). The case for ancient hot springs in Gusev crater, Mars. Astrobiology, 20(4), 475–499.

    Article  Google Scholar 

  • Sayson, N. L. B., Bi, T., Ng, V., Pham, H., Trainor, L. S., Schwefel, H. G., Coen, S., Erkintalo, M., & Murdoch, S. G. (2019). Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators. Nature Photonics, 13(10), 701–706.

    Article  Google Scholar 

  • Seppälä, A., Lu, H., Clilverd, M. A., & Rodger, C. J. (2013). Geomagnetic activity signatures in wintertime stratosphere wind, temperature, and wave response. Journal of Geophysical Research: Atmospheres, 118(5), 2169–2183.

    Article  Google Scholar 

  • Seppälä, A., Matthes, K., Randall, C. E., & Mironova, I. A. (2014). What is the solar influence on climate? Overview of activities during CAWSES-II. Progress in Earth and Planetary Science, 1(1), 1–12.

    Article  Google Scholar 

  • Shinichi, N. (2018). CanSat and CubeSat history in Japan – How they started and contributed to education and technologies. In The Sixth UNISEC-Global Meeting. UNISEC.

    Google Scholar 

  • Smith, A. W., Forsyth, C., Rae, J., Rodger, C. J., & Freeman, M. P. (2021). The impact of sudden commencements on ground magnetic field variability: Immediate and delayed consequences. Space Weather, 19(7), e2021SW002764.

    Article  Google Scholar 

  • Smith, A., Rodger, C., Manus, D. M., Forsyth, C., Rae, I., Freeman, M., Clilverd, M., Petersen, T., & Dalzell, M. (2022). The correspondence between sudden commencements and geomagnetically induced currents; insights from New Zealand. Space Weather, e2021SW002983.

    Google Scholar 

  • Speidel, U. (2021). What the tropical pacific wants from Starlink for Christmas: Will LEO networks finally bridge the digital divide to remote islands? In Asian Internet Engineering Conference, pp. 34–40.

    Google Scholar 

  • Speidel, U., & Rattenbury, N. (2021). Solar storms and the Internet. https://blog.apnic.net/2021/07/22/are-solar-storms-a-threat-to-the-internet/. [Online; accessed 29 Aug 2022].

  • Stabile, A., Yotov, V. V., Aglietti, G. S., De Francesco, P., & Richardson, G. (2022). Effect of boundary conditions on a high-performance isolation hexapod platform. Mechanism and Machine Theory, 177, 105020.

    Article  Google Scholar 

  • Stocks, P. (2022). Economic transition through aerospace. New Zealand International Review, 47(1), 6–9.

    Google Scholar 

  • Strekalov, D. V., Marquardt, C., Matsko, A. B., Schwefel, H. G., & Leuchs, G. (2016). Nonlinear and quantum optics with whispering gallery resonators. Journal of Optics, 18(12), 123002.

    Article  Google Scholar 

  • Teece, B. L., George, S. C., Djokic, T., Campbell, K. A., Ruff, S. W., & Van Kranendonk, M. J. (2020). Biomolecules from fossilized hot spring sinters: Implications for the search for life on Mars. Astrobiology, 20(4), 537–551.

    Article  Google Scholar 

  • Tepper, E., & Whitehead, C. (2018). Moon, Inc.: The New Zealand model of granting legal personality to natural resources applied to space. New Space, 6(4), 288–298.

    Article  Google Scholar 

  • UK Government. (2023). Guidance: International Bilateral Fund (IBF). https://www.gov.uk/government/publications/international-bilateral-fund/guidance-international-bilateral-fund-ibf. [Online; accessed 27 May 2023].

  • Uniservices. (2023). How Zenno Astronautics is making a difference in the world. https://www.uniservices.co.nz/zenno-astronautics. [Online; accessed 22 May 2023].

  • United Nations Publications. (2018). International Space Law: United Nations Instruments. https://www.unoosa.org/res/oosadoc/data/documents/2017/stspace/stspace61rev_2_0_html/V1605998-ENGLISH.pdf. [Online; accessed 12 Sept 2022].

  • UoA. (2018). Alumnus gift to help Kiwis explore space. https://www.auckland.ac.nz/en/news/2018/11/06/alumnus-gift-to-help-kiwis-explore-space.html. [Online; accessed 17 May 2023].

  • UoA. (2019). New professor at Auckland wins major award for cleaning up space junk. https://www.auckland.ac.nz/en/news/2019/11/18/new-professor-at-auckland-wins-major-award-for-cleaning-up-space.html. [Online; accessed 17 May 2023].

  • UoA. (2020a). New Zealand’s first student-built satellite ready for lift off. https://www.auckland.ac.nz/en/news/2020/11/03/new-zealand-s-first-student-built-satellite-ready-for-lift-off.html. [Online; accessed 17 May 2023].

  • UoA. (2020b). About the APSS. https://apss.space.auckland.ac.nz/about/. [Online; accessed 17 May 2023].

  • Venkatesan, A., Lowenthal, J., Prem, P., & Vidaurri, M. (2020). The impact of satellite constellations on space as an ancestral global commons. Nature Astronomy, 4(11), 1043–1048.

    Article  Google Scholar 

  • Walker, R., Galeone, P., Page, H., Castro, A., Emma, F., Callens, N., & Ventura-Traveset, J. (2010). ESA hands-on space education project activities for university students: Attracting and training the next generation of space engineers. In IEEE EDUCON 2010 conference (pp. 1699–1708). IEEE.

    Chapter  Google Scholar 

  • Watt, R. (2022). Private communication.

    Google Scholar 

  • Weddell, S., Clare, R., & Lambert, A. (2019, January). Near earth object image restoration with multi-object adaptive optics. In Proc. 1st NEO and Debris Detection Conference (pp. 22–24).

    Google Scholar 

  • Westall, F., Foucher, F., Bost, N., Bertrand, M., Loizeau, D., Vago, J. L., Kminek, G., Gaboyer, F., Campbell, K. A., et al. (2015). Biosignatures on Mars: What, where, and how? Implications for the search for Martian life. Astrobiology, 15(11), 998–1029.

    Article  Google Scholar 

  • Wiley, C. A. (1985). Synthetic aperture radars: A paradigm for technology evolution. IEEE Transactions on Aerospace and Electronic Systems, AES-21(3), 440–443.

    Article  Google Scholar 

  • Wofsy, S. C., & Hamburg, S. (2019). MethaneSAT – A new observing platform for high resolution measurements of methane and carbon dioxide. AGU Fall Meeting Abstracts, 2019, A53F–A502F.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas James Rattenbury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rattenbury, N.J. (2024). New Zealand’s Growing Space Sector: A Technological and Science Perspective. In: Pozza, M.A. (eds) Ascending to Space. Space Law and Policy. Springer, Singapore. https://doi.org/10.1007/978-981-97-0714-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0714-0_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0713-3

  • Online ISBN: 978-981-97-0714-0

  • eBook Packages: Law and CriminologyLaw and Criminology (R0)

Publish with us

Policies and ethics