Skip to main content

Environmental Impact and Economic Benefits of Biopolymers in the Textile Industry

  • Chapter
  • First Online:
Biopolymers in the Textile Industry
  • 80 Accesses

Abstract

The excessive utilization of petroleum-based synthetic and non-biodegradable resources for a variety of applications in textile industry has caused severe environmental destruction. The need for sustainable materials has stimulated scientists to explore alternative materials. For instance, biopolymers have gained attention owing to their ecological and biodegradable nature. Over the past decades, textile industry has been using synthetic- and plastic-based materials owing to their attractive properties such as low cost, easily availability, and versatility. However, textile/fashion industry is responsible for the production of around 92 million tonnes of non-biodegradable and highly hazardous waste at every level of processing which ultimately end up in landfills. Processing of petroleum into polyester results in the production of synthetic fibers or microplastics that can take up to 200 years to decompose which ultimately pose health risks to consumers. Along with the health risks, these synthetic fibers are responsible for the groundwater pollution, noise pollution, soil pollution, wastewater and liquid waste run off, and airborne waste. The production of microplastics emits greenhouse gas, i.e. 300 times more dangerous than carbon dioxide. Furthermore, the economy of the country also hampers by the textile waste as consumer spending increases, so does waste output from both the manufacturing and home sectors. In this way, the environment and economy both get affected by the textile industry. Owing to changing demand and technologies, the share of environment-friendly eco-textiles within international textile and apparel trade has been increasing so as to minimize hazardous effects. The ongoing research focuses to meet the environmental legislation and consumer demands for advanced, sustainable options and biopolymers are one of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anastas, P.T. & Warner, J.C. (1998) Green Chemistry: Theory and Practice. Oxford University Press, New York.

    Google Scholar 

  2. Gadilohar, B.L. & Shankarling, G.S. (2017). Choline based ionic liquids and their applications in organic transformation. Journal of Molecular Liquids, 227, 234–261.

    Google Scholar 

  3. Khan, S.N., Hailegiorgis, S.M., Man, Z., Shariff, A.M. & Garg, S. (2017). Thermophysical properties of concentrated aqueous solution of N-methyldiethanolamine (MDEA), piperazine (PZ), and ionic liquids hybrid solvent for CO2 capture. Journal of Molecular Liquids, 229, 221–229.

    Google Scholar 

  4. Qin, Y. (2008). Alginate fibres: an overview of the production processes and applications in wound management, Polymer International, 57, 171–180.

    Google Scholar 

  5. Sharma, R. (2005). Guar gum grafting and its application in textile, Asian Journal of Experimental Sciences, 19, 77–81.

    Google Scholar 

  6. Zia, K.M., Tabasum, S., Nasif, M., Sultan, N., Aslam, N., Noreen, A. & Zuber, M. (2017). A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites, International Journal of Biological Macromolecule, 96, 282–301.

    Google Scholar 

  7. Li, J., He, J. & Huang, Y. (2017). Role of alginate in antibacterial finishing of textiles, International Journal of Biological Macromolecule, 94, 466–473.

    Google Scholar 

  8. Eom, S.-I. (2001). Using chitosan as an antistatic finish for polyester fabric, American Association of Textile Chemists and Colorists Review, 1, 57–60.

    Google Scholar 

  9. Ranjbar-Mohammadi, M., Arami, M., Bahrami, H., Mazaheri, F. & Mahmoodi, N.M. (2010). Grafting of chitosan as a biopolymer onto wool fabric using Anhydride Bridge and its antibacterial property, Colloids and Surfaces B: Biointerfaces, 76, 397–403.

    Google Scholar 

  10. Younes, B. (2017). Classification, characterization, and the production processes of biopolymers used in the textiles industry, Journal of Textile institute, 108, 674–682.

    Google Scholar 

  11. Grzebieniarz, W., Biswas, D., Roy, S. & Jamróz, E. (2023). Advances in biopolymer-based multi-layer film preparations and food packaging applications, Food Packaging and Shelf Life, 35, 101033.

    Google Scholar 

  12. Flieger, M., Kantorova, M., Prell, A., Rezanka, T. & Votruba, J. (2003) Biodegradable plastics from renewable sources, Folia Microbiologica, 48, 27–44.

    Google Scholar 

  13. Landis, A.E., Miller, S.A. & Theis, T.L. (2007). Life cycle of the corn-soybean agroecosystem for biobased production, Environment Science and Technology, 41, 1457–1464.

    Google Scholar 

  14. Rehman, A., Qunyi, T., Sharif, H. R., Korma, S. A., Karim, A., Manzoor, M. F., Mehmood, A., Iqbal, M. W., Raza, H., Ali, A. & Mehmood, T. (2021). Biopolymer based nanoemulsion delivery system: An effective approach to boost the antioxidant potential of essential oil in food products, Carbohydrate Polymer Technologies and Applications, 2, 100082.

    Google Scholar 

  15. Christensen, P.R., Scheuermann, A.M., Loeffler, K.E., & Helms, B.A. (2019). Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nature Chemistry, 11, 442–448.

    Google Scholar 

  16. Coates, G.W., & Getzler, Y.D.Y.L. (2020). Chemical recycling to monomer for an ideal, circular polymer economy. Nature Reviews Materials, 5, 501–516.

    Google Scholar 

  17. Qasim, U., Osman, A. I., Al-Muhtaseb, A. H., Farrell, C., Al-Abri, M., Ali, M., Vo D. V. N., Jamil, F. & Rooney., D. W. (2021). Renewable cellulosic nanocomposities for food packaging to avaoid fossil fuel plastic pollution: a review, Environmental Chemistry Letters, 19, 613–641.

    Google Scholar 

  18. Abel, B.A., Snyder, R.L., & Coates, G.W. (2021). Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 373, 783–789.

    Google Scholar 

  19. Crini, N. M., Lichtfouse, E., Torri, G. & Crini, G. (2019). Applications of Chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology and environmental chemistry, Environment Chemistry Letters, 17, 1667–1692.

    Google Scholar 

  20. Deweid, L., Avrutina, O., & Kolmar, H. (2019). Microbial transglutaminase for biotechnological and biomedical engineering. Biological Chemistry, 400, 257–274.

    Google Scholar 

  21. Law, R.C. (2004). Applications of cellulose acetate 5.1 Cellulose acetate in textile application, Macromolecular Symposia, 208, 255–266.

    Google Scholar 

  22. Pillai, C., Paul, W. & Sharma, C.P. (2009). Chitin and chitosan polymers: chemistry, solubility and fiber formation, Progress in Polymer Science, 34, 641–678.

    Google Scholar 

  23. Kumar, M.R. (1999). Chitin and chitosan fibres: a review, Bulletin of Material Science, 22, 905–915.

    Google Scholar 

  24. Enescu, D. (2008). Use of chitosan in surface modification of textile materials, Romanian Biotechechnological Letters, 13, 4037–4048.

    Google Scholar 

  25. Tridico, S. (2009). Natural animal textile fibres: structure, characteristics and identification, Identification of Textile Fibers, 27–67.

    Google Scholar 

  26. Kundu, S.C., Kundu, B., Talukdar, S., Bano, S., Nayak, S., Kundu, J., Mandal, B.B., Bhardwaj, N., Botlagunta, M., Dash, B.C., Acharya, C., Ghosh, A.K. (2012). Nonmulberry silk biopolymers, Biopolymers, 97, 455–467.

    Google Scholar 

  27. Dutta, S., Pal, S., Panwar, P., Sharma, R. K. & Bhutia, P. L. (2022). Biopolymeric Nanocarriers for Nutrient Delivery and Crop Biofortification, ACS Omega. 7, 25909–25920.

    Google Scholar 

  28. Mitura S., Sionkowska, A. & Jaiswal A. (2020). Biopolymers for hydrogels in cosmetics: Review, Journal of Materials Science, 31: 50 Chemical Engineering Journal.

    Google Scholar 

  29. Li, X., Ding, C., Li, X., Yang, H., Liu, S., Wang, X., Zhang, L., Sun, Q., Liu, X. & Chen, J. (2020). Electronic biopolymers: From molecular engineering to functional devices, Chemical Engineering Journal, 397, 125499.

    Google Scholar 

  30. Mulyadi, A., Zhang, Z., Dutzer, M., Liu, W. & Deng Y. (2017). Facile approach for synthesis of doped carbon electrocatalyst from cellulose nanofibrils toward high-performance metal-free oxygen reduction and hydrogen evolution, Nano Energy, 32, 336–346.

    Google Scholar 

  31. Nasr., R. A., & Ali, E. A. (2022). Polyethersulfone/gelatin nano-membranes for the Rhodamine B dye removal and textile industry effluents treatment under cost effective condition, Journal of Environmental Chemical Engineering, 10, 107250.

    Google Scholar 

  32. Aadil, K. R., Awasthi, S., Kumar, R., Dutt, S. & Jha, H. (2023). Advanced functional nanomaterials of biopolymers: Structure, properties, and applications Functional Materials from Carbon, Inorganic, and Organic Sources Methods and Advances Woodhead Publishing Series in Electronic and Optical Materials, 521–557.

    Google Scholar 

  33. McNeil, S. J., Gupta, H. (2022). Emerging applications of aerogels in textiles, Polymer Testing, 106, 107426.

    Google Scholar 

  34. Abdulwahid, R. T., Aziz, S. B. & Kadir, F.Z. (2023). Replacing synthetic polymer electrolytes in energy storage with flexible biodegradable alternatives: sustainable green biopolymer blend electrolyte for supercapacitor device, Materials Today Sustainability, 23, 100472.

    Google Scholar 

  35. Ilman, B. & Balkis A. P. (2023). Sustainable biopolymer stabilized earthen: Utilization of chitosan biopolymer on mechanical, durability, and microstructural properties, Journal of Building Engineering, 76, 107220.

    Google Scholar 

  36. Schiros, T. N., Mosher, C. Z., Zhu, Y., Bina, T., Gomez, V., Lee, C. L., Lu, H. & Obermeyer, A. C. (2021). Bioengineering textiles across scales for a sustainable circular economy, Chem, 7, 2913–2926.

    Google Scholar 

  37. Hong, Y., Wu, S. & Wei, G. (2023). Adverse effects of microplastics and nanoplastics on the reproductive system: A comprehensive review of fertility and potential harmful interactions, Science of The Total Environment, 903, 166258.

    Google Scholar 

  38. Zhou, Y., Y. a, Ashokkumar, V., Amobonye, A., Bhattacharjee, G., Sirohi, R., Singh, V., Flora, G., Kumar, V., Pillai, S., Zhang, Z. & Awasthi, M. K. (2023). Current research trends on cosmetic microplastic pollution and its impacts on the ecosystem: A review, Environmental Pollution, 320, 121106.

    Google Scholar 

  39. Ferdinánd, M., Várdai, R., Móczó, J. & Pukánszky, B. (2023). Poly(lactic acid) reinforced with synthetic polymer fibers: interactions, structure and properties, Composites Part A: Applied Science and Manufacturing, 164, 107318.

    Google Scholar 

  40. Singh, R., Gautam, S., Sharma, B., Jain, P. & Chauhan, K. D. (2021). Chapter 2: Biopolymers and their classifications, Biopolymers and their Industrial Applications From Plant, Animal, and Marine Sources, to Functional Products, 21–44.

    Google Scholar 

  41. Kumar, S. S. D., Houreld, N. N. & Abrahamse, H. (2020). Biopolymer-Based Composites for Medical Applications, Encyclopedia of Renewable and Sustainable Materials, 2, 20–28.

    Google Scholar 

  42. Gowthaman, N.S.K., Lim, H.N., Sreeraj, T.R., Amalraj, A. & Gopi, S. (2021). Chapter 15, Advantages of biopolymers over synthetic polymers: social, economic, and environmental aspects, Biopolymers and their Industrial Applications From Plant, Animal, and Marine Sources, to Functional Products, 351–372.

    Google Scholar 

  43. Ananthi, G. B. G., Sivakumar, N., & Deepak, M.S. (2021). Experimental study of biopolymer in corrosion resistance for industrial exposure condition, Materials Today Proceedings, 44, 651–658.

    Google Scholar 

  44. Navaratnam, S., Selvaranjan, K., Jayasooriya, D., Rajeev, P. & Sanjayan, J. (2023). Applications of natural and synthetic fiber reinforced polymer in infrastructure: A suitability assessment, Journal of Building Engineering, 66, 105835.

    Google Scholar 

  45. Lebreton, L. & Andrady, A. (2019). Future scenarios of global plastic waste generation and disposal humanities and social sciences communications, Palgrave Communications, 5, 1–11.

    Google Scholar 

  46. Zhang, Y., Wu, P., Xu, R., Wang, X., Lei, L., Schartup, A. T., Peng, Y., Pang, Q., Wang, X., Mai, L., Wang, R., Liu, H., Wang, X., Luijendijk, A., Chassignet, E., Xu, X., Shen, H., Zheng, S. & Zeng, E. Y. (2023). Plastic waste discharge to the global ocean constrained by seawater observations, Nature Communications, 14, 1–12.

    Google Scholar 

  47. Neves, C. V., Gaylarde, C. C., Neto, J. A. B., Vieira, K. S., Pierri, B., Waite, C. C.C., Scott, D. C., Fonseca, E. M. (2022). The transfer and resulting negative effects of nano- and micro-plastics through the aquatic trophic web—A discreet threat to human health, Water Biology and Security, 1, 100080.

    Google Scholar 

  48. Liu, X., Lei, T., Boré, A. Lou, Z., Abdouraman, B. & Ma., W. (2022). Evolution of global plastic waste trade flows from 2000 to 2020 and its predicted trade sinks in 2030. Journal of Cleaner Production, 376, 134373.

    Google Scholar 

  49. Shen, M., Huang, W., Chen, M., Song, B., Zeng, G. & Zhang, Y. (2020). (Micro) plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change, Journal of Cleaner Production, 254, 120138.

    Google Scholar 

  50. Cristóbal, J., Albizzati , P. F., Giavini, M., Caro, D., Manfredi, S. & Tonini, D (2023). Management practices for compostable plastic packaging waste: Impacts, challenges and recommendations, Waste Management, 170, 166–176.

    Google Scholar 

  51. Hildebrandt, J., Thrän, D. & Bezama, A. (2021). The circularity of potential bio-textile production routes: Comparing life cycle impacts of bio-based materials used within the manufacturing of selected leather substitutes, Journal of Cleaner Production, 287, 125470.

    Google Scholar 

  52. Kim, T., Kim, D. & Park, Y. (2022). Recent progress in regenerated fibers for “green” textile products, Journal of Cleaner Production, 376, 134226.

    Google Scholar 

  53. Oliveira, C. R. S., Júnior, A. H. S., Mulinari, J. & Immich, A. P. S. (2021). Textile Re-Engineering: Eco-responsible solutions for a more sustainable industry, Sustainable Production and Consumption, 28, 1232–1248.

    Google Scholar 

  54. Akram, M., Kumar, C., Parkash, Chachar, F. A. & A. Khans (2022). A Study on Waste Disposal Management in Textile Industry: A Case Study of Gul Ahmed, South Asian Management Review, 1, 14–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heena Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, H. (2024). Environmental Impact and Economic Benefits of Biopolymers in the Textile Industry. In: Ahmed, S., Shabbir, M. (eds) Biopolymers in the Textile Industry. Springer, Singapore. https://doi.org/10.1007/978-981-97-0684-6_9

Download citation

Publish with us

Policies and ethics