Skip to main content

Properties and Performance Relationship of Biopolymers in Textile Industry

  • Chapter
  • First Online:
Biopolymers in the Textile Industry

Abstract

To move towards green products is the demand raising globally in all fields of life day by day. Particularly in the area of textile industry, eco-friendly products are either used as starting material or as finishing agents now a days. In textile, the role of biopolymers such as wheat starch, Arabic gum, chitosan, soybean, etc., are being used to enhance the performance properties of textiles. These biopolymers are either extracted from natural resources or synthesized using eco-friendly materials are used to make such products which are employed for different purposes such as in this chapter, will discuss its characteristics, synthesis or extraction, and application of each biopolymer and their performance for various fields such as textile, medical, sports, food and flavors, cosmetics, etc., will be explained. It is expected the main objective of this chapter will be helpful for students, researchers, and industrialists who want to introduce biopolymers for improving their product quality. It can possess inherent moisture management capabilities and enhance wearer comfort. Biopolymers can be processed into fibers, films, and coatings, providing versatility in textile design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelrazek, S., Abou Taleb, E., Mahmoud, A. S., & Hamouda, T. (2022). Utilization of Polylactic Acid (PLA) in Textile Food Packaging: A Review. Egyptian Journal of Chemistry65(3), 725–738.

    Google Scholar 

  2. Adeel, S., Liaqat, S., Hussaan, M., Mia, R., Ahmed, B., & Wafa, H. (2022). Environmental friendly bio-dyeing of silk using Alkanna tinctoria based Alkannin natural dye. Industrial Crops and Products, 186, 115301.

    Google Scholar 

  3. Afruzi, H. F., Heidari, G., & Maleki, A. (2022). Magnetic nanocomposite hydrogel based on arabic gum for remediation of lead (II) from contaminated water. Materials Chemistry Horizons, 1(2), 107–122.

    Google Scholar 

  4. Agarwal, S. (2020). Biodegradable polymers: Present opportunities and challenges in providing a microplastic‐free environment. Macromolecular Chemistry and Physics, 221(6), 2000017.

    Google Scholar 

  5. Alipal, J., PuAd, N. M., Lee, T. C., Nayan, N. H. M., Sahari, N., Basri, H., & Abdullah, H. Z.(2021).A review of gelatin properties, sources, process,applications, and commercialisation. Materials Today Proceedings, 22(8), 240–260.

    Google Scholar 

  6. Atala, A., Lanza, R., Mikos, T., & Nerem, R. (Eds.). (2018). Principles of regenerative medicine. Academic press.

    Google Scholar 

  7. Atikah, M. S. N., Ilyas, R. A., Sapuan, S. M., Ishak, M. R., Zainudin, E. S., Ibrahim, R.,& Jumaidin, R. (2019). Degradation and physical properties of sugar palm starch/sugar palm nanofibrillated cellulose bionanocomposite. Polimery, 64(10), 680–689.

    Google Scholar 

  8. Bao, Q., Wong, W., Liu, S., & Tao, X. (2022). Accelerated degradation of poly (lactide acid)/poly (hydroxybutyrate) (PLA/PHB) yarns/fabrics by UV and O2 Exposure in South China Seawater. Polymers, 14(6), 1216.

    Google Scholar 

  9. Barletta, M., Aversa, C., Ayyoob, M., Gisario, A., Hamad, K., Mehrpouya, M., & Vahabi, H. (2022). Poly (butylene succinate) (PBS): Materials, processing, and industrial applications. Progress in Polymer Science, 101579.

    Google Scholar 

  10. Bhat, P.N., Nivedita. S., & Roy, S. (2011). Current use and future perspectives in pharmaceutical and biomedical application. Indian Fibre Textile Research, 36(2), 168–195.

    Google Scholar 

  11. Blanco, I.; Ingrao, C.; Siracusa, V. 2020, Life-Cycle Assessment in the Polymeric Sector: A Comprehensive Review of Application Experiences on the Italian Scale. Polymers 12 (8), 1641.

    Google Scholar 

  12. Boukis, A. C., Reiter, K., Frölich, M., Hofheinz, D., & Meier, M. A. (2018). Multicomponent reactions provide key molecules for secret communication. Nature communications, 9(1), 1439.

    Google Scholar 

  13. Brian, Z., & Weintraub, J. A. (2020). Peer Reviewed: Oral Health and COVID-19: Increasing the Need for Prevention and Access. Preventing chronic disease, 17.

    Google Scholar 

  14. Butola, B. S. (2019). Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. International journal of biological macromolecules, 121, 905–912.

    Google Scholar 

  15. Chabi, M., et al. (2021). Retracing storage polysaccharide evolution in Stramenopila. Frontiers in plant science 12: 629045.

    Google Scholar 

  16. Chatterjee, A., Bharadiya, P., & Hansora, D. (2019). Layered double hydroxide based bionanocomposites. Applied Clay Science, 177, 19–36.

    Google Scholar 

  17. Chawla, P., Kumar, N., Bains, A., Dhull, S. B., Kumar, M., Kaushik, R., & Punia, S. (2020). Gum arabic capped copper nanoparticles: Synthesis, characterization, and applications. International journal of biological macromolecules, 146, 232–242.

    Google Scholar 

  18. Costa Dias, M., Joyce, R., Postel-Vinay, F., & Xu, X. (2020). The challenges for labour market policy during the Covid‐19 pandemic. Fiscal Studies, 41(2), 371–382.

    Google Scholar 

  19. Duan, Q., & Lu, Y. (2021). Silk sericin as a green adhesive to fabricate a textile strain sensor with excellent electromagnetic shielding performance. American Chemical Society Applied Materials & Interfaces, 13(4), 28832–28852.

    Google Scholar 

  20. Dutta, D., Graupner, N., Müssig, J., & Brüggemann, D. (2023). Assembly of Rolled-Up Collagen Constructs on Porous Alumina Textiles. ACS Nanoscience Au.

    Google Scholar 

  21. Fahim, I., et al. (2019). “The synthesis, production & economic feasibility of manufacturing PLA from agricultural waste. Sustainable Chemistry and Pharmacy 12: 100142.

    Google Scholar 

  22. Fernández, M.A.; Silva, O.F.; Vico, R.V.; de Rossi, R.H. 2019 Complex systems that incorporate cyclodextrins to get materials for some specific applications. Carbohydrates. Results., 480, 12–34.

    Google Scholar 

  23. Furtwengler, P.; Avérous, L. 2018 Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polymer Chem., 9, 4258–4287.

    Google Scholar 

  24. Ghasemi-Mobarakeh L, Kolahreez D, Ramakrishna S, Williams D. 2019 Key terminology in biomaterials and biocompatibility. Curr Opin Biomed Eng.; 10:45–50.

    Google Scholar 

  25. Gieparda, W., et al. (2021). Effectiveness of silanization and plasma treatment in the improvement of selected flax fibers’ properties. Materials 14(13): 3564.

    Google Scholar 

  26. Gondhalekar, L.V. Mohite, P.J. Pawar, S.M. Datta, V.S. Naik-Nimbalkar, (2019) A study of viscose quality by reduction of knots in slurry and alkali cellulose, Cellulose. Chem. Technol. 53 219226.

    Google Scholar 

  27. Guidotti, G.; Soccio, M.; Lotti, N.; Siracusa, V.; Gazzano, M.; Munari, 2019, A. New multi-block copolyester of 2,5-furandicarboxylic acid containing PEG-like sequences to form flexible and degradable films for sustainable packaging. Polym. Degrad. Stab. 169, 108963.

    Google Scholar 

  28. Guo, Y., Ruan, K., Shi, X., Yang, X., & Gu, J. (2020). Factors affecting thermal conductivities of the polymers and polymer composites: A review. Composites Science and Technology, 193, 108134.

    Google Scholar 

  29. Gyles, C. (2018). Peer reviewed journal articles. The Canadian Veterinary Journal, 59(2), 113.

    Google Scholar 

  30. Gyles, D. A., et al. (2018). A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. European Polymer Journal 88: 373–392.

    Google Scholar 

  31. Haq, F., Mehmood, S., Haroon, M., Kiran, M., Waseem, K., Aziz, T., & Farid, A. (2022). Role of starch based materials as a bio-sorbents for the removal of dyes and heavy metals from wastewater. Journal of Polymers and the Environment, 30(5), 1730–1748.

    Google Scholar 

  32. Hasandoost, L., Marx, D., Zalzal, P., Safir, O., Hurtig, M., Mehrvar, C., & Towler, M. R. (2021). Comparative evaluation of two glass polyalkenoate cements an in vivo pilot study using a sheep model. Journal of Functional Biomaterials, 12(3), 44–63.

    Google Scholar 

  33. Hassan, M. M., & Carr, C. M. (2019). A review of the sustainable methods in imparting shrink resistance to wool fabrics. Journal of Advanced Research, 18, 39–60.

    Google Scholar 

  34. Huang, G., & Huang, H. (2018). Application of hyaluronic acid as carriers in drug delivery. Drug delivery25(1), 766–772.

    Google Scholar 

  35. Iber, B. T., Kasan, N. A., Torsabo, D., & Omuwa, J. W. (2022). A review of various sources of chitin and chitosan in nature. Journal of Renewable Materials, 10(4), 1097.

    Google Scholar 

  36. Iglesias, M. S., et al. (2019). Eco-friendly anti-felting treatment of wool top based on biosurfactant and enzymes. Journal of Cleaner Production 220: 846–852.

    Google Scholar 

  37. Ilyas, A., Engstrom, L., Athalye, A., & Lin, J. (2018, July). Black-box adversarial attacks with limited queries and information. In International conference on machine learning (pp. 2137–2146). PMLR.

    Google Scholar 

  38. Jackson, D.G. 2019 Hyaluronan in the lymphatics: The key role of the hyaluronan receptor LYVE-1 in leucocyte trafficking. Matrix Biol. 79, 219–223.

    Google Scholar 

  39. Jajpura, L., et al. (2017). Dyeing of cotton with terminalia Chebula as natural dye with Chitosan.” Asian Dye 14: 57–62.

    Google Scholar 

  40. Jem, K. J., & Tan, B. (2020). Global Polyglycolic Acid (PGA) Market Report by Application and by Regions—Industry Trends, Size, Share, Growth, Estimation and Forecast Value Market Reserach,45(2), 2017–2024,”

    Google Scholar 

  41. Jeong, M., Choi, I. W., Go, E. M., Cho, Y., Kim, M., Lee, B., ... & Yang, C. (2020). Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 369(6511), 1615–1620.

    Google Scholar 

  42. Jiao, Y., Li, C., Liu, L., Wang, F., Liu, X., Mao, J., & Wang, L. (2020). Construction and application of textile-based tissue engineering scaffolds: A review. Biomaterials Science, 8(13), 3574–3600.

    Google Scholar 

  43. Kavitha, G., Rengasamy, R., & Inbakandan, D. (2018). Polyhydroxybutyrate production from marine source and its application. International journal of biological macromolecules, 111, 102–108.

    Google Scholar 

  44. Kostag, Marc, and Omar A. El Seoud (2021). Sustainable biomaterials based on cellulose, chitin and chitosan composites-A review. Carbohydrate Polymer Technologies and Applications 2 100079.

    Google Scholar 

  45. Kumar, S.V ., Appukuttan. S. V ., & Wang, L. (2019).The influence of bound water on the FTIR characteristics of starch and starch nanocrystals obtained from selected natural sources. Starch‐Starke 71(5) 170–260.

    Google Scholar 

  46. Kumar, S. V.; Kumar, V. A. S.; Kumar, S. 2018,The Influence of Bound Water on the FTIR Characteristics of Starch and Starch Nanocrystals Obtained from Selected Natural Sources. Starch ‐ Stärke. 1700026.

    Google Scholar 

  47. Lee, C. H., et al. (2020). “A comprehensive review on bast fibre retting process for optimal performance in fibre-reinforced polymer composites. Advances in Materials Science and Engineering 2020: 1–27.

    Google Scholar 

  48. Li, G. Z. M., Xu, F., Yang, B., Li, X., Meng, X., & Li, Y. (2020). Synthesis and biological application of polylactic acid. Molecules, 25(9), 23–55.

    Google Scholar 

  49. Li, J., Wang, Y., Wang, Z., Wang, J., & Wu, D. (2021). Surface chain engineering of chitin nanocrystals towards tailoring the nucleating capacities for poly (β-hydroxybutyrate). International Journal of Biological Macromolecules, 166, 967–976.

    Google Scholar 

  50. Liang, X., Fan, A., Li, Z., Wei, N., Fan, W., Liang, H., & Zhang, Y. (2022). Highly regulatable heat conductance of graphene sericin hybrid for responsive textiles. Advanced Functional Materials, 32(17), 119–121.

    Google Scholar 

  51. Liu, Z., Ye, L., Xi, J., Wang, J., & Feng, Z. G. (2021). Cyclodextrin polymers structure, synthesis, and use as drug carriers. Progress in Polymer Science, 18(6), 381–408.

    Google Scholar 

  52. Loron, C. C., François, C., Rainbird, R. H., Turner, E. C., Borensztajn, S., & Javaux, E. J. (2019). Early fungi from the Proterozoic era in Arctic Canada. Nature, 570(7760), 232–235.

    Google Scholar 

  53. Lyalina, T., et al. (2018). Correlation analysis of chitosan physicochemical parameters determined by different methods. Org. Med. Chem. Int 1: 555562.

    Google Scholar 

  54. McAdam, B., Brennan Fournet, M., McDonald, P., & Mojicevic, M. (2020). Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics. Polymers, 12(12), 2908.

    Google Scholar 

  55. Miankafshe, M. A., Bashir, T., & Persson, N. K. (2019). The role and importance of surface modification of polyester fabrics by chitosan and hexadecylpyridinium chloride for the electrical and electro-thermal performance of graphene-modified smart textiles. New Journal of Chemistry, 43(17), 6643–6658.

    Google Scholar 

  56. Miao, F., Liu, Y., Gao, M., Yu, X., Xiao, P., Wang, M., ... & Wang, X. (2020). Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode. Journal of Hazardous Materials, 399, 123023.

    Google Scholar 

  57. Mohan, K., Ganesan, A. R., Ezhilarasi, P. N., Kondamareddy, K. K., Rajan, D. K., Sathishkumar, P., ... & Conterno, L. (2022). Green and eco-friendly approaches for the extraction of chitin and chitosan: A review. Carbohydrate Polymers, 287, 119349.

    Google Scholar 

  58. Monnery, B. D. (2021). Polycation-mediated transfection: Mechanisms of internalization and intracellular trafficking. Biomacromolecules, 22(10), 4060–4083.

    Google Scholar 

  59. Moradali, M. F., & Rehm, B. H. (2020). Bacterial biopolymers: from pathogenesis to advanced materials. Nature Reviews Microbiology, 18(4), 195–210.

    Google Scholar 

  60. Mowafi, S., et al. (2018). “Utilization of proteinic biopolymers: current status and future prospects. Journal of Textiles, Coloration and Polymer Science 15(1): 15–31.

    Google Scholar 

  61. Muthukumar GS T, Sastry TP, Chamundeeswari M. (2019) Collagen as a potential biomaterial in biomedical applications. Rev Adv Mater Sci.; 53(1):29–39.

    Google Scholar 

  62. Nguyen, T. P., Easley, A. D., Kang, N., Khan, S., Lim, S. M., Rezenom, Y. H., ... & Wooley, K. L. (2021). Polypeptide organic radical batteries. Nature, 593(7857), 61–66.

    Google Scholar 

  63. Nofar, M., Sacligil, D., Carreau, P. J., Kamal, M. R., & Heuzey, M. C. (2019). Poly (lactic acid) blends: Processing, properties and applications. International journal of biological macromolecules, 125, 307–360.

    Google Scholar 

  64. Olatunji, O. (2020). Aquatic biopolymers. Springer International Publishing. https://doi.org/10.1007/978-3-030-34709-3_1.

  65. Oprea, M., & Voicu, S. I. (2020). Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydrate Polymers, 247, 116683.

    Google Scholar 

  66. Owczarzy, A., Kurasinski, R., Kulig, K., Rogoz, W., Szkudlarek, A., & Maciazek-Jurczyk, M. (2020).Collagen structure, properties and application. Engineering of Biomaterials, 23(1), 156–183.

    Google Scholar 

  67. P.K. Dara, M. Raghavankutty, N. Sebastian, N.S. Chatterjee, S. Mathew, C.N. Ravishankar, R. Anandan, (2020) Rheological, physico-chemical, and surface-active properties of gelatin extracted from bigeye tuna (Thunnus obesus) skin waste, J. Aquat. Food Product. Technolegy 117.

    Google Scholar 

  68. Peng, X., Umer, M., Pervez, M. N., Hasan, K. F., Habib, M. A., Islam, M. S., ... & Cai, Y. (2023). Biopolymers-based microencapsulation technology for sustainable textiles development: a short review. Case Studies in Chemical and Environmental Engineering, 100349.

    Google Scholar 

  69. Phan, H. N., Bui, H. M., Vu, N. K., & Trinh, H. T. K. (2023). Fabrication of fabric-like Bacterial Cellulose/Collagen membranes by applying textile padding method for wound dressing applications. Cellulose, 30(4), 2289–2321.

    Google Scholar 

  70. Platnieks, O., Gaidukovs, S., Thakur, V. K., Barkane, A., & Beluns, S. (2021). Bio-based poly (butylene succinate): Recent progress, challenges and future opportunities. European Polymer Journal, 161, 110855.

    Google Scholar 

  71. Radzik, P., Leszczynska, A., & Pielichowski, K. (2020). Modern biopolyamide based materials synthesis and modification. Polymer Bulletin, 77(7), 501–528.

    Google Scholar 

  72. Rafiqah, S. A., Khalina, A., Harmaen, A. S., Tawakkal, I. A., Zaman, K., Asim, M., & Lee, C. H. (2021). A review on properties and application of bio-based poly (butylene succinate). Polymers, 13(9), 1430–1466.

    Google Scholar 

  73. Rafiqah, S. A., Khalina, A., Harmaen, A. S., Tawakkal, I. A., Zaman, K., Asim, M., ... & Lee, C. H. (2021). A review on properties and application of bio-based poly (butylene succinate). Polymers, 13(9), 1436.

    Google Scholar 

  74. Rehman, F. U., Adeel, S., Haddar, W., Bibi, R., Azeem, M., Mia, R., & Ahmed, B. (2022). Microwave-assisted exploration of yellow natural dyes for nylon fabric. Sustainability, 14(9), 5599.

    Google Scholar 

  75. Rol, F., Belgacem, M. N., Gandini, A., & Bras, J. (2019). Recent advances in surface-modified cellulose nanofibrils. Progress in Polymer Science, 88, 241–264.

    Google Scholar 

  76. Sabapathy, P. C., Devaraj, S., Meixner, K., Anburajan, P., Kathirvel, P., Ravikumar, Y., ... & Qi, X. (2020). Recent developments in Polyhydroxyalkanoates (PHAs) production–A review. Bioresource technology, 306, 123132.

    Google Scholar 

  77. Sadasivuni, K. K., Saha, P., Adhikari, J., Deshmukh, K., Ahamed, M. B., & Cabibihan, J. J. (2020). Recent advances in mechanical properties of biopolymer composites: A review. Polymer Composites, 41(1), 32–59.

    Google Scholar 

  78. Sahana, T. and P. Rekha (2018). “Biopolymers: Applications in wound healing and skin tissue engineering.“ Molecular biology reports 45: 2857–2867.

    Google Scholar 

  79. Sahoo, D. R., & Biswal, T. (2021). Alginate and its application to tissue engineering. SN Applied Sciences, 3(1), 15–60.

    Google Scholar 

  80. Saleh, M. A., Zaied, N. S., Maksoud, M. A., & Hafez, O. M. (2019). Application of Arabic gum and essential oils as the postharvest treatments of Le Conte pear fruits during cold storage. Asian Journal of Agricultural and Horticultural Research, 3(3), 1–11.

    Google Scholar 

  81. Sarkar, A., Li, H., Cray, D., & Boxall, S. (2018). Composite whey protein–cellulose nanocrystals at oil-water interface: Towards delaying lipid digestion. Food Hydrocolloids, 77, 436–444.

    Google Scholar 

  82. Schmitz, C., et al. (2019). Conversion of chitin to defined chitosan oligomers: current status and future prospects. Marine drugs 17(8): 452.

    Google Scholar 

  83. Shahidi, S. and B. Moazzenchi (2019). “Comparison between mordant treatment and plasma sputtering on natural dying and uv protection properties of wool fabric. Fibers and Polymers 20: 1658–1665.

    Google Scholar 

  84. Shi, M., Shen, M., Guo, X., Jin, X., Cao, Y., Yang, Y., ... & Wang, J. (2021). Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS nano, 15(7), 11396–11405.

    Google Scholar 

  85. Shrivastava, A. (2018). Plastic properties and testing. Introduction to plastics engineering: 49–110.

    Google Scholar 

  86. Singh, R., Gautam, S., Sharma, B., Jain, P., & Chauhan, K. D. (2021). Biopolymers and their classifications. In Biopolymers and their Industrial Applications (pp. 21–44). Elsevier.

    Google Scholar 

  87. Smith, G, Wiersema, J. H., Barrie, F. R., Greuter, W., Hawksworth, D. L., Herendeen, P. S, & Turland, N. J (2018). International code of nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the nineteenth international botanical congress shenzhen, china. Natutral History Mesum, 50 (8), 20–49.

    Google Scholar 

  88. Szpak, P., & Valenzuela, D. (2020). Camelid husbandry in the Atacama Desert? A stable isotope study of camelid bone collagen and textiles from the Lluta and Camarones Valleys, northern Chile. PLoS One, 15(3), e0228332.

    Google Scholar 

  89. Tiwari, S., & Bahadur, P. (2019). Modified hyaluronic acid based materials for biomedical applications. International journal of biological macromolecules121, 556–571.

    Google Scholar 

  90. Uranukul, B.; Woolston, B.M.; Fink, G.R.; Stephanopoulos, 2019, G. Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes. Metab. Eng.

    Google Scholar 

  91. Venkataprasanna, K., et al. (2020). Fabrication of Chitosan/PVA/GO/CuO patch for potential wound healing application. International journal of biological macromolecules 143: 744–762.

    Google Scholar 

  92. Wang, H., Zhang, Y., Liang, X., & Zhang, Y. (2021). Smart fibers and textiles for personal health management. ACS nano, 15(8), 12497–12508.

    Google Scholar 

  93. Wang, Z., Ma, S., Sun, B., Wang, F., Huang, J., Wang, X., & Bao, Q. (2021). Effects of thermal properties and behavior of wheat starch and gluten on their interaction: A review. International journal of biological macromolecules, 177, 474–484.

    Google Scholar 

  94. Worsfold, P. J., Achterberg, E. P., Birchill, A. J., Clough, R., Leito, I., Lohan, M. C., & Ussher, S. J. (2019). Estimating uncertainties in oceanographic trace element measurements. Frontiers in Marine Science, 5, 515.

    Google Scholar 

  95. Yang, Y., Zhang, M., Ju, Z., Tam, P. Y., Hua, T., Younas, M. W., & Hu, H. (2021). Poly (lactic acid) fibers, yarns and fabrics Manufacturing, properties and applications. Textile Research Journal9(10), 1641–1669.

    Google Scholar 

  96. Zamboni, F., Vieira, S., Reis, R. L., Oliveira, J. M., & Collins, M. N. (2018). The potential of hyaluronic acid in immunoprotection and immunomodulation chemistry, processing and function. Progress in Materials Science, 17(4), 97–122.

    Google Scholar 

  97. Zhao, C., Liu, G., Tan, Q., Gao, M., Chen, G., Huang, X., ... & Xu, D. (2023). Polysaccharide-based biopolymer hydrogels for heavy metal detection and adsorption. Journal of Advanced Research, 44, 53–70.

    Google Scholar 

  98. Zhou, L., Zhou, H., & Yang, X. (2019). Preparation and performance of a novel starch-based inorganic/organic composite coagulant for textile wastewater treatment. Separation and Purification Technology, 210, 93–99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazal-ur-Rehman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fazal-ur-Rehman, Zhara, H., Adeel, S., Özomay, Z., Mia, R. (2024). Properties and Performance Relationship of Biopolymers in Textile Industry. In: Ahmed, S., Shabbir, M. (eds) Biopolymers in the Textile Industry. Springer, Singapore. https://doi.org/10.1007/978-981-97-0684-6_4

Download citation

Publish with us

Policies and ethics