Skip to main content

Introduction to Biopolymers and Their Potential in the Textile Industry

  • Chapter
  • First Online:
Biopolymers in the Textile Industry

Abstract

Biopolymers are polymers obtained from some living organisms; therefore, they are recyclable and biocompatible; moreover, they have a variety of efficient groups permitting the resistor of the boundary through nanofillers and the multistate assembly. They discover usage in various manufacturing reaching from nutrition engineering to manufacturing, packing and biomedical industry. Biopolymers are capable materials due to their appearances, comparable profusion, biocompatibility and sole properties alike non-toxicity etc. have been used during many textile industrialized processes. They have been used as necessary agents, i.e., chitosan and smoothing representatives, i.e., fiber ethers, to permute the coloring process, which results in quickness and an extra uniform shade in the completed textiles. Biopolymers are actual much compulsory in the future as they are an illumination to lime and sustainable environment. They are biodegradable, renewable and their building produces less glasshouse air. This work will focus on a brief overview of biopolymers and their actual role in the fabric industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, N. H., Mustafa, S., & Che Man, Y. B. (2015). Microbial polysaccharides and their modification approaches: A review. International Journal of Food Properties, 18(2), 332–347.

    Article  CAS  Google Scholar 

  2. Alagarasan, D., Harikrishnan, A., Surendiran, M., Indira, K., Khalifa, A. S., & Elesawy, B. H. (2021). Synthesis and characterization of CuO nanoparticles and evaluation of their bactericidal and fungicidal activities in cotton fabrics. Applied Nanoscience, 1–10.

    Google Scholar 

  3. Alves, V. D., Castelló, R., Ferreira, A. R., Costa, N., Fonseca, I. M., & Coelhoso, I. M. (2011). Barrier properties of carrageenan/pectin biodegradable composite films. Procedia Food Science, 1, 240–245.

    Article  CAS  Google Scholar 

  4. Anderson, A. J., & Dawes, E. (1990). Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiological reviews, 54(4), 450–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Balasubramaniam, B., Prateek, Ranjan, S., Saraf, M., Kar, P., Singh, S. P., ... & Gupta, R. K. (2020). Antibacterial and antiviral functional materials: Chemistry and biological activity toward tackling COVID-19-like pandemics. ACS Pharmacology & Translational Science, 4(1), 8–54.

    Google Scholar 

  6. Basso, A., & Serban, S. (2019). Industrial applications of immobilized enzymes—A review. Molecular Catalysis, 479, 110607.

    Article  CAS  Google Scholar 

  7. Batista, R. A., Espitia, P. J. P., Quintans, J., & d. S. S., Freitas, M. M., Cerqueira, M. Â., Teixeira, J. A., & Cardoso, J. C. (2019). Hydrogel as an alternative structure for food packaging systems. Carbohydrate polymers, 205, 106–116.

    Article  CAS  PubMed  Google Scholar 

  8. Berdan, V. Y., Klauser, P. C., & Wang, L. (2021). Covalent peptides and proteins for therapeutics. Bioorganic & Medicinal Chemistry, 29, 115896.

    Article  CAS  Google Scholar 

  9. Bertolino, V., Cavallaro, G., Milioto, S., & Lazzara, G. (2020). Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials. Carbohydrate polymers, 245, 116502.

    Article  CAS  PubMed  Google Scholar 

  10. Biswas, B., Kumar, A., Kaur, R., Krishna, B. B., & Bhaskar, T. (2021). Catalytic hydrothermal liquefaction of alkali lignin over activated bio-char supported bimetallic catalyst. Bioresource Technology, 337, 125439.

    Google Scholar 

  11. Biswas, M. C., Jony, B., Nandy, P. K., Chowdhury, R. A., Halder, S., Kumar, D., Ramakrishna, S., Hassan, M., Ahsan, M. A., & Hoque, M. E. (2021). Recent advancement of biopolymers and their potential biomedical applications. Journal of Polymers and the Environment, 1–24.

    Google Scholar 

  12. Brown, R. (2000). Social identity theory: Past achievements, current problems and future challenges. European Journal of Social Psychology, 30(6), 745–778.

    Google Scholar 

  13. Butola, B. S. (2019). Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. International Journal of Biological Macromolecules, 121, 905–912.

    Google Scholar 

  14. Callister, W. D., & Rethwisch, D. G. (2007). Materials science and engineering: an introduction (Vol. 7). John wiley & sons New York.

    Google Scholar 

  15. Casalini, T., Rossi, F., Castrovinci, A., & Perale, G. (2019). A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Frontiers in Bioengineering and Biotechnology, 7, 259.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chapman, J., Ismail, A. E., & Dinu, C. Z. (2018). Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts, 8(6), 238.

    Article  Google Scholar 

  17. Chen, Y. J. (2014). Bioplastics and their role in achieving global sustainability. Journal of Chemical and Pharmaceutical Research, 6(1), 226–231.

    Google Scholar 

  18. Chen, X., & Hearle, J. (2010). Structural hierarchy in textile materials: an overview. Modelling and Predicting Textile behaviour, 3–40.

    Google Scholar 

  19. Ciesielski, S., Pokoj, T., & Klimiuk, E. (2010). Cultivation-dependent and-independent characterization of microbial community producing polyhydroxyalkanoates from raw glycerol. Journal of Microbiology and Biotechnology, 20(5), 853–861.

    Article  CAS  PubMed  Google Scholar 

  20. Dassanayake, R. S., Acharya, S., & Abidi, N. (2018). Biopolymer-based materials from polysaccharides: Properties, processing, characterization and sorption applications. Advanced Sorption Process Applications, 1–24.

    Google Scholar 

  21. Devaux, A., Kromann, P., & Ortiz, O. (2014). Potatoes for sustainable global food security. Potato Research, 57, 185–199.

    Google Scholar 

  22. Eid, B. M., & Ibrahim, N. A. (2021). Recent developments in sustainable finishing of cellulosic textiles employing biotechnology. Journal of Cleaner Production, 284, 124701.

    Google Scholar 

  23. Espevik, T., Otterlei, M., Skjåk-Braek, G., Ryan, L., Wright, S. D., & Sundan, A. (1993). The involvement of CD14 in stimulation of cytokine production by uronic acid polymers. European Journal of Immunology, 23(1), 255–261.

    Article  CAS  PubMed  Google Scholar 

  24. Farokhzad, O. C., & Langer, R. (2009). Impact of nanotechnology on drug delivery. ACS Nano, 3(1), 16–20.

    Article  CAS  PubMed  Google Scholar 

  25. Fernandes, M., Padrão, J., Ribeiro, A. I., Fernandes, R. D., Melro, L., Nicolau, T., Mehravani, B., Alves, C., Rodrigues, R., & Zille, A. (2022). Polysaccharides and metal nanoparticles for functional textiles: A review. Nanomaterials, 12(6), 1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garcia-Ochoa, F., Castro, E. G., & Santos, V. (2000). Oxygen transfer and uptake rates during xanthan gum production. Enzyme and Microbial Technology, 27(9), 680–690.

    Article  CAS  PubMed  Google Scholar 

  27. Giacomelli, V. S. (2005). Morfologia, propriedades termicas e mecanicas de filmes de proteina isolada de soja/dodecilsulfato de sodio/policaprolactona-triol.

    Google Scholar 

  28. Gomes, L., Paschoalin, V., & Del Aguila, E. (2017). Chitosan nanoparticles: Production, physicochemical characteristics and nutraceutical applications. Rev. Virtual Quim, 9(1), 387–409.

    Article  CAS  Google Scholar 

  29. Gonçalves, C., Gonçalves, I. C., Magalhães, F. D., & Pinto, A. M. (2017). Poly (lactic acid) composites containing carbon-based nanomaterials: A review. Polymers, 9(7), 269.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gopi, S., Balakrishnan, P., Chandradhara, D., Poovathankandy, D., & Thomas, S. (2019). General scenarios of cellulose and its use in the biomedical field. Materials Today Chemistry, 13, 59–78.

    Article  CAS  Google Scholar 

  31. Gowthaman, N., Lim, H., Sreeraj, T., Amalraj, A., & Gopi, S. (2021). Advantages of biopolymers over synthetic polymers: social, economic, and environmental aspects. In Biopolymers and Their Industrial Applications (pp. 351–372). Elsevier.

    Google Scholar 

  32. Helleday, T., Petermann, E., Lundin, C., Hodgson, B., & Sharma, R. A. (2008). DNA repair pathways as targets for cancer therapy. Nature Reviews Cancer, 8(3), 193–204.

    Article  CAS  PubMed  Google Scholar 

  33. Hoang, T. C., Black, M. C., Knuteson, S. L., & Roberts, A. P. (2019). Environmental pollution, management, and sustainable development: Strategies for Vietnam and other developing countries. In (Vol. 63, pp. 433–436): Springer.

    Google Scholar 

  34. Hufenus, R., Yan, Y., Dauner, M., & Kikutani, T. (2020). Melt-spun fibers for textile applications. Materials, 13(19), 4298.

    Google Scholar 

  35. Jahandideh, A., Ashkani, M., & Moini, N. (2021). Biopolymers in textile industries. In Biopolymers and Their Industrial Applications (pp. 193–218). Elsevier.

    Google Scholar 

  36. Janjarasskul, T., Tananuwong, K., Phupoksakul, T., & Thaiphanit, S. (2020). Fast dissolving, hermetically sealable, edible whey protein isolate-based films for instant food and/or dry ingredient pouches. LWT, 134, 110102.

    Article  CAS  Google Scholar 

  37. Javaid, R., & Qazi, U. Y. (2019). Catalytic oxidation process for the degradation of synthetic dyes: An overview. International Journal of Environmental Research and Public Health, 16(11), 2066.

    Google Scholar 

  38. Jem, K. J., & Tan, B. (2020). The development and challenges of poly (lactic acid) and poly (glycolic acid). Advanced Industrial and Engineering Polymer Research, 3(2), 60–70.

    Article  Google Scholar 

  39. Jo, W. K., & Tayade, R. J. (2014). New generation energy-efficient light source for photocatalysis: LEDs for environmental applications. Industrial & Engineering Chemistry Research, 53(6), 2073–2084.

    Google Scholar 

  40. Johann To Berens, P., & Molinier, J. (2020). Formation and recognition of UV-induced DNA damage within genome complexity. International Journal of Molecular Sciences, 21(18), 6689.

    Google Scholar 

  41. Kasiri, M. B., & Safapour, S. (2014). Natural dyes and antimicrobials for green treatment of textiles. Environmental Chemistry Letters, 12(1), 1–13.

    Google Scholar 

  42. Kikutani, T., Tamura, F., Nishiwaki, K., Kodama, M., Suda, M., Fukui, T., Takahashi, N., Yoshida, M., Akagawa, Y., Kimura, M. (2009). Oral motor function and masticatory performance in the community-dwelling elderly. Odontology, 97, 38–42.

    Google Scholar 

  43. Koller, M. (2019). Polyhydroxyalkanoate biosynthesis at the edge of water activitiy-haloarchaea as biopolyester factories. Bioengineering, 6(2), 34.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kopf, S., Åkesson, D., & Skrifvars, M. (2023). Textile Fiber Production of Biopolymers–A Review of Spinning Techniques for Polyhydroxyalkanoates in Biomedical Applications. Polymer Reviews, 63(1), 200–245.

    Article  CAS  Google Scholar 

  45. Li, Z., Yang, J., & Loh, X. J. (2016). Polyhydroxyalkanoates: Opening doors for a sustainable future. NPG Asia Materials, 8(4), e265–e265.

    Article  CAS  Google Scholar 

  46. Liechty, W. B., Kryscio, D. R., Slaughter, B. V., & Peppas, N. A. (2010). Polymers for drug delivery systems. Annual Review of Chemical and Biomolecular Engineering, 1, 149–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, Y., Ahmed, S., Sameen, D. E., Wang, Y., Lu, R., Dai, J., Li, S., & Qin, W. (2021). A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends in Food Science & Technology, 112, 532–546.

    Article  CAS  Google Scholar 

  48. Liu, Y., Yang, Y., Zhang, C., Huang, F., Wang, F., Yuan, J., ... & Liu, L. (2020). Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Science China Life Sciences, 63, 364–374.

    Google Scholar 

  49. Lochhead, R. (2017). Chapter 3-Basic Physical Sciences for the Formulation of Cosmetic Products. Cosmetic Science and Technology. In: Amsterdam: Elsevier.

    Google Scholar 

  50. Mahmood, H., Moniruzzaman, M., Iqbal, T., & Khan, M. J. (2019). Recent advances in the pretreatment of lignocellulosic biomass for biofuels and value-added products. Current Opinion in Green and Sustainable Chemistry, 20, 18–24.

    Google Scholar 

  51. Mohan, C. E. (2014). Manufacture and mechanical testing of thin film composites composed of poly-lactic acid and nanocrystalline cellulose.

    Google Scholar 

  52. Moohan, J., Stewart, S. A., Espinosa, E., Rosal, A., Rodríguez, A., Larrañeta, E., Donnelly, R. F., & Domínguez-Robles, J. (2019). Cellulose nanofibers and other biopolymers for biomedical applications. A review. Applied Sciences, 10(1), 65.

    Google Scholar 

  53. Mpofu, N. S., Mwasiagi, J. I., Nkiwane, L. C., & Njuguna, D. (2019). Use of regression to study the effect of fabric parameters on the adhesion of 3D printed PLA polymer onto woven fabrics. Fashion and Textiles, 6, 1–12.

    Google Scholar 

  54. Mukherjee, P. (2019). Bioactive phytocomponents and their analysis. Quality Control and Evaluation of Herbal Drugs, 237–328.

    Google Scholar 

  55. Muller, J., González-Martínez, C., & Chiralt, A. (2017). Combination of poly (lactic) acid and starch for biodegradable food packaging. Materials, 10(8), 952.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mura, P. (2020). Advantages of the combined use of cyclodextrins and nanocarriers in drug delivery: A review. International Journal of Pharmaceutics, 579, 119181.

    Article  CAS  PubMed  Google Scholar 

  57. Muzaffar, S., Abbas, M., Siddiqua, U. H., Arshad, M., Tufail, A., Ahsan, M.,.. & Iqbal, M. (2021). Enhanced mechanical, UV protection and antimicrobial properties of cotton fabric employing nanochitosan and polyurethane based finishing. Journal of Materials Research and Technology, 11, 946–956.

    Google Scholar 

  58. Nair, A. B., Sivasubramanian, P., Balakrishnan, P., Ajith Kumar, K. A. N., & Sreekala, M. S. (2013). Environmental effects, biodegradation, and life cycle analysis of fully biodegradable “green” composites. Polymer Composites, 515–568.

    Google Scholar 

  59. Nasrollahzadeh, M. (2021). Biopolymer-Based Metal Nanoparticle Chemistry for Sustainable Applications: Volume 2: Applications. Elsevier.

    Google Scholar 

  60. Nejatian, M., Abbasi, S., & Azarikia, F. (2020). Gum Tragacanth: Structure, characteristics and applications in foods. International Journal of Biological Macromolecules, 160, 846–860.

    Article  CAS  PubMed  Google Scholar 

  61. Nogueira, G. F., Oliveira, R. A., & d., Velasco, J. I., & Fakhouri, F. M. (2020). Methods of incorporating plant-derived bioactive compounds into films made with agro-based polymers for application as food packaging: A brief review. Polymers, 12(11), 2518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ogunsona, E., Ojogbo, E., & Mekonnen, T. (2018). Advanced material applications of starch and its derivatives. European Polymer Journal, 108, 570–581.

    Article  CAS  Google Scholar 

  63. Paes, S. S., Yakimets, I., & Mitchell, J. R. (2008). Influence of gelatinization process on functional properties of cassava starch films. Food Hydrocolloids, 22(5), 788–797.

    Article  CAS  Google Scholar 

  64. Pan, Y., Farmahini-Farahani, M., O’Hearn, P., Xiao, H., & Ocampo, H. (2016). An overview of bio-based polymers for packaging materials. J. Bioresources and Bioproduction, 1(3), 106–113.

    Google Scholar 

  65. Parmar, D., Sugiono, E., Raja, S., & Rueping, M. (2014). Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chemical Reviews, 114(18), 9047–9153.

    Google Scholar 

  66. Pasricha, A., & Greeninger, R. (2018). Exploration of 3D printing to create zero-waste sustainable fashion notions and jewelry. Fashion and Textiles, 5(1), 1–18.

    Google Scholar 

  67. Patti, A., & Acierno, D. (2022). Towards the sustainability of the plastic industry through biopolymers: Properties and potential applications to the textiles world. Polymers, 14(4), 692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pawar, P., & Purwar, A. H. (2013). Biodegradable polymers in food packaging. American Journal of Engineering Research, 2(5), 151–164.

    Google Scholar 

  69. Philip, S., Keshavarz, T., & Roy, I. (2007). Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 82(3), 233–247.

    Article  CAS  Google Scholar 

  70. Plackett, D., Letchford, K., Jackson, J., & Burt, H. (2014). A review of nanocellulose as a novel vehicle for drug delivery. Nordic Pulp & Paper Research Journal, 29(1), 105–118.

    Article  CAS  Google Scholar 

  71. Porta, R., Sabbah, M., & Di Pierro, P. (2020). Biopolymers as food packaging materials. In (Vol. 21, pp. 4942): MDPI.

    Google Scholar 

  72. Prabaharan, M., & Mano, J. (2004). Chitosan-based particles as controlled drug delivery systems. Drug Delivery, 12(1), 41–57.

    Article  Google Scholar 

  73. Qin, Y. (2016). A brief description of textile fibers. Medical Textile Materials, 3, 23–42.

    Article  Google Scholar 

  74. Radhakrishnan, S., Krishnamoorthy, K., Sekar, C., Wilson, J., & Kim, S. J. (2014). A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Applied Catalysis B: Environmental, 148, 22–28.

    Google Scholar 

  75. Rahman, M. Z., Rahman, M., Mahbub, T., Ashiquzzaman, M., Sagadevan, S., & Hoque, M. E. (2023). Advanced biopolymers for automobile and aviation engineering applications. Journal of Polymer Research, 30(3), 106.

    Article  CAS  Google Scholar 

  76. Reddy, R. L., Reddy, V. S., & Gupta, G. A. (2013). Study of bio-plastics as green and sustainable alternative to plastics. International Journal of Emerging Technology and Advanced Engineering, 3(5), 76–81.

    Google Scholar 

  77. Rendón-Villalobos, R., Ortíz-Sánchez, A., Tovar-Sánchez, E., & Flores-Huicochea, E. (2016). The role of biopolymers in obtaining environmentally friendly materials. Composites from Renewable and Sustainable Materials, 151.

    Google Scholar 

  78. Roselet, S. L., & Premakumari, J. (2015). Studies on Metformin Hydrochloride and α-Cyclodextrin Inclusion Complexes. Green Chemistry & Technology Letters, 1, 48–53

    Google Scholar 

  79. Rubino, C., Bonet Aracil, M., Gisbert-Payá, J., Liuzzi, S., Stefanizzi, P., Zamorano Cantó, M., & Martellotta, F. (2019). Composite eco-friendly sound absorbing materials made of recycled textile waste and biopolymers. Materials, 12(23), 4020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ruiz-Mirazo, K., Briones, C., & de la Escosura, A. (2014). Prebiotic systems chemistry: New perspectives for the origins of life. Chemical Reviews, 114(1), 285–366.

    Article  CAS  PubMed  Google Scholar 

  81. Salimpour Abkenar, S., & Mohammad Ali Malek, R. (2021). Modification of Silk Yarn with β‐Cyclodextrin Nanoparticles: Preparation, Characterization, and Natural Dyeing Properties. Starch‐Stärke, 73(7-8), 2000209.

    Google Scholar 

  82. Samrot, A. V., Sean, T. C., Kudaiyappan, T., Bisyarah, U., Mirarmandi, A., Faradjeva, E., Abubakar, A., Ali, H. H., Angalene, J. L. A., & Kumar, S. S. (2020). Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: A review. International Journal of Biological Macromolecules, 165, 3088–3105.

    Article  CAS  PubMed  Google Scholar 

  83. Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A., & Lin, C. T. (2017). A review of clustering techniques and developments. Neurocomputing, 267, 664–681.

    Google Scholar 

  84. Shawky, H. A. (2009). Synthesis of ion‐imprinting chitosan/PVA crosslinked membrane for selective removal of Ag (I). Journal of Applied Polymer Science, 114(5), 2608–2615.

    Google Scholar 

  85. Shirvan, A. R., Shakeri, M., & Bashari, A. (2019). Recent advances in application of chitosan and its derivatives in functional finishing of textiles. The Impact and Prospects of Green Chemistry for Textile Technology, 107–133.

    Google Scholar 

  86. Siembida-Lösch, B., Anderson, W. B., Wang, Y. M., Bonsteel, J., & Huck, P. M. (2015). Effect of ozone on biopolymers in biofiltration and ultrafiltration processes. Water Research, 70, 224–234.

    Article  PubMed  Google Scholar 

  87. da Silva, L. R., de Carvalho, C. W. P., Velasco, J. I., & Fakhouri, F. M. (2020). Extraction and characterization of starches from pigmented rice. International Journal of Biological Macromolecules, 156, 485–493.

    Article  PubMed  Google Scholar 

  88. Silva, J. A., Tobella, L. M., Becerra, J., Godoy, F., & Martínez, M. A. (2007). Biosynthesis of poly-β-hydroxyalkanoate by Brevundimonas vesicularis LMG P-23615 and Sphingopyxis macrogoltabida LMG 17324 using acid-hydrolyzed sawdust as carbon source. Journal of Bioscience and Bioengineering, 103(6), 542–546.

    Article  CAS  PubMed  Google Scholar 

  89. Singhvi, M., & Gokhale, D. (2013). Biomass to biodegradable polymer (PLA). Rsc Advances, 3(33), 13558–13568.

    Article  CAS  Google Scholar 

  90. Smolen, V. F. (1978). Bioavailability and pharmacokinetic analysis of drug responding systems. Annual Review of Pharmacology and Toxicology, 18(1), 495–522.

    Article  CAS  PubMed  Google Scholar 

  91. Sohn, Y. J., Kim, H. T., Baritugo, K. A., Jo, S. Y., Song, H. M., Park, S. Y., Park, S. K., Pyo, J., Cha, H. G., & Kim, H. (2020). Recent advances in sustainable plastic upcycling and biopolymers. Biotechnology Journal, 15(6), 1900489.

    Article  CAS  Google Scholar 

  92. Soldo, A., Miletić, M., & Auad, M. L. (2020). Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Scientific Reports, 10(1), 267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Song, J., Winkeljann, B., & Lieleg, O. (2020). Biopolymer-based coatings: Promising strategies to improve the biocompatibility and functionality of materials used in biomedical engineering. Advanced Materials Interfaces, 7(17), 2000850.

    Article  CAS  Google Scholar 

  94. Stading, M., Rindlav-Westling, Å., & Gatenholm, P. (2001). Humidity-induced structural transitions in amylose and amylopectin films. Carbohydrate polymers, 45(3), 209–217.

    Article  CAS  Google Scholar 

  95. Storz, H. (2013). Bio-based plastics: status, challenges and trends.

    Google Scholar 

  96. Sworn, G. (2021). Xanthan gum. In Handbook of hydrocolloids (pp. 833–853). Elsevier.

    Google Scholar 

  97. Tabari, M. (2017). Investigation of carboxymethyl cellulose (CMC) on mechanical properties of cold water fish gelatin biodegradable edible films. Foods, 6(6), 41.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Tarique, J., Sapuan, S., Khalina, A., Sherwani, S., Yusuf, J., & Ilyas, R. (2021). Recent developments in sustainable arrowroot (Maranta arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: A review. Journal of Materials Research and Technology, 13, 1191–1219.

    Article  CAS  Google Scholar 

  99. Tarrahi, R., Fathi, Z., Seydibeyoğlu, M. Ö., Doustkhah, E., & Khataee, A. (2020). Polyhydroxyalkanoates (PHA): From production to nanoarchitecture. International Journal of Biological Macromolecules, 146, 596–619.

    Article  CAS  PubMed  Google Scholar 

  100. Tharanathan, R. (2003). Biodegradable films and composite coatings: Past, present and future. Trends in Food Science & Technology, 14(3), 71–78.

    Article  CAS  Google Scholar 

  101. Tobler-Rohr, M. I. (2011). Handbook of Sustainable Textile Production. Elsevier.

    Book  Google Scholar 

  102. Torres‐Giner, S., Figueroa‐Lopez, K. J., Melendez‐Rodriguez, B., Prieto, C., Pardo‐Figuerez, M., & Lagaron, J. M. (2021). Emerging trends in biopolymers for food packaging. Sustainable Food Packaging Technology, 1–33.

    Google Scholar 

  103. Udayakumar, G. P., Muthusamy, S., Selvaganesh, B., Sivarajasekar, N., Rambabu, K., Banat, F., Sivamani, S., Sivakumar, N., Hosseini-Bandegharaei, A., & Show, P. L. (2021). Biopolymers and composites: Properties, characterization and their applications in food, medical and pharmaceutical industries. Journal of Environmental Chemical Engineering, 9(4), 105322.

    Article  CAS  Google Scholar 

  104. Vakili, M., Deng, S., Cagnetta, G., Wang, W., Meng, P., Liu, D., & Yu, G. (2019). Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review. Separation and Purification Technology, 224, 373–387.

    Google Scholar 

  105. Van Vlierberghe, S., Graulus, G.-J., Samal, S. K., Van Nieuwenhove, I., & Dubruel, P. (2014). Porous hydrogel biomedical foam scaffolds for tissue repair. In Biomedical Foams for Tissue Engineering Applications (pp. 335–390). Elsevier.

    Google Scholar 

  106. Vargas, M., Chiralt, A., Albors, A., & González-Martínez, C. (2009). Effect of chitosan-based edible coatings applied by vacuum impregnation on quality preservation of fresh-cut carrot. Postharvest Biology and Technology, 51(2), 263–271.

    Article  CAS  Google Scholar 

  107. Wilce, M. C., Aguilar, M.-I., & Hearn, M. T. (1995). Physicochemical basis of amino acid hydrophobicity scales: Evaluation of four new scales of amino acid hydrophobicity coefficients derived from RP-HPLC of peptides. Analytical Chemistry, 67(7), 1210–1219.

    Article  CAS  Google Scholar 

  108. Wu, Q., Therriault, D., & Heuzey, M.-C. (2018). Processing and properties of chitosan inks for 3D printing of hydrogel microstructures. ACS Biomaterials Science & Engineering, 4(7), 2643–2652.

    Article  CAS  Google Scholar 

  109. Xu, Q., Ke, X., Shen, L., Ge, N., Zhang, Y., Fu, F., & Liu, X. (2018). Surface modification by carboxymethy chitosan via pad-dry-cure method for binding Ag NPs onto cotton fabric. International Journal of Biological Macromolecules, 111, 796–803.

    Article  CAS  PubMed  Google Scholar 

  110. Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs, 13(3), 1133–1174.

    Google Scholar 

  111. Yu, Y., Shen, M., Song, Q., & Xie, J. (2018). Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydrate Polymers, 183, 91–101.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shumaila Kiran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kiran, S., Shahzaib, Iqbal, S., Munir, B., Hafiz, I. (2024). Introduction to Biopolymers and Their Potential in the Textile Industry. In: Ahmed, S., Shabbir, M. (eds) Biopolymers in the Textile Industry. Springer, Singapore. https://doi.org/10.1007/978-981-97-0684-6_1

Download citation

Publish with us

Policies and ethics