Skip to main content

Plastisphere: Marine Microbial Assemblages for Biodegradation of Microplastics

  • Chapter
  • First Online:
Microbial Applications for Environmental Sustainability

Abstract

The emergence of plastic waste from industries is a serious ecological concern. In recent years, plastic has been identified in various ecosystems, including human tissues, posing a threat to the biotic components of the Earth and giving rise to potential adverse consequences. The plastic waste is fragmented into smaller components like nanoplastics (NPs) and microplastics (MPs) by different physical and chemical processes. The surface of small plastic polymers is occupied by several microbial communities such as bacteria, fungi, and diatoms, giving rise to the plastisphere. The hydrophobic surface of MPs can provide suitable environment for aquatic microbial communities to colonize and form biofilms. The microbial composition and colonization on the surface of MPs are influenced by the environment and physiochemical properties of the plastisphere. Several techniques are used for the characterization and analysis of the plastisphere to frame a suitable strategy for plastic degradation. In this chapter, we provide a detailed account of the plastic pollution in different environments, factors affecting plastisphere, characterization of plastisphere, and microbial and enzyme-mediated degradation of MPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alimi OS, Fadare OO, Okoffo ED (2021) Microplastics in African ecosystems: current knowledge, abundance, associated contaminants, techniques, and research needs. Sci Total Environ 755:142422

    Article  CAS  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andler R, Tiso T, Blank L, Andreeßen C, Zampolli J, D’Afonseca V, Guajardo C, Díaz-Barrera A (2022) Current progress on the biodegradation of synthetic plastics: from fundamentals to biotechnological applications. Rev Environ Sci Biotechnol 2022 214 21(4):829–850. https://doi.org/10.1007/S11157-022-09631-2

    Article  CAS  Google Scholar 

  • Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605

    Article  CAS  PubMed  Google Scholar 

  • Arias-Andres M et al 2019 undefined (2018) Collateral effects of microplastic pollution on aquatic microorganisms: an ecological perspective. Elsevier

    Google Scholar 

  • Arpia AA, Chen W-H, Ubando AT et al (2021) Microplastic degradation as a sustainable concurrent approach for producing biofuel and obliterating hazardous environmental effects: a state-of-the-art review. J Hazard Mater 418:126381

    Article  CAS  PubMed  Google Scholar 

  • Auta HS, Emenike CU, Jayanthi B, Fauziah SH (2018) Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar Pollut Bull 127:15–21

    Article  CAS  PubMed  Google Scholar 

  • Awasthi S, Srivastava P, Singh P et al (2017) Biodegradation of thermally treated high-density polyethylene (HDPE) by Klebsiella pneumoniae CH001. 3 Biotech 7:332

    Article  PubMed  PubMed Central  Google Scholar 

  • Azzarello MY, Van Vleet ES (1987) Marine birds and plastic pollution. Mar Ecol Prog Ser 37:295–303

    Article  Google Scholar 

  • Bacha A-U-R, Nabi I, Zhang L (2021) Mechanisms and the engineering approaches for the degradation of microplastics. ACS EST Eng 1:1481–1501

    Article  CAS  Google Scholar 

  • Bardají DKR, Furlan JPR, Stehling EG (2019) Isolation of a polyethylene degrading Paenibacillus sp. from a landfill in Brazil. Arch Microbiol 201:699–704

    Article  PubMed  Google Scholar 

  • Barnes DKA (2002) Invasions by marine life on plastic debris. Nature 416(6883):808–809

    Article  CAS  PubMed  Google Scholar 

  • Browne MA, Dissanayake A, Galloway TS et al (2008) Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol 42:5026–5031

    Article  CAS  PubMed  Google Scholar 

  • Browne MA, Galloway TS, Thompson RC (2010) Spatial patterns of plastic debris along estuarine shorelines. Environ Sci Technol 44:3404–3409

    Article  CAS  PubMed  Google Scholar 

  • Bryant JA, Clemente TM, Viviani DA et al (2016) Diversity and activity of communities inhabiting plastic debris in the North Pacific Gyre. mSystems 1:1234

    Article  Google Scholar 

  • Carlén A, Nikdel K, Wennerberg A et al (2001) Surface characteristics and in vitro biofilm formation on glass ionomer and composite resin. Biomaterials 22:481–487

    Article  PubMed  Google Scholar 

  • Carpenter EJ, Smith K Jr (1972) Plastics on the Sargasso Sea surface. Science 175:1240–1241

    Article  CAS  PubMed  Google Scholar 

  • Carson HS, Nerheim MS, Carroll KA, Eriksen M (2013) The plastic-associated microorganisms of the North Pacific Gyre. Mar Pollut Bull 75:126–132

    Article  CAS  PubMed  Google Scholar 

  • Caruso G (2020) Microbial colonization in marine environments: overview of current knowledge and emerging research topics. J Mar Sci Eng 8:78

    Article  Google Scholar 

  • Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62:2588–2597

    Article  CAS  PubMed  Google Scholar 

  • Cózar A, Echevarría F, González-Gordillo JI et al (2014) Plastic debris in the open ocean. Proc Natl Acad Sci 111:10239–10244

    Article  PubMed  PubMed Central  Google Scholar 

  • Da Costa JP, Nunes AR, Santos PSM et al (2018) Degradation of polyethylene microplastics in seawater: insights into the environmental degradation of polymers. J Environ Sci Health Part A 53:866–875

    Article  Google Scholar 

  • Dang H, Li T, Chen M, Huang G (2008) Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl Environ Microbiol 74:52–60

    Article  CAS  PubMed  Google Scholar 

  • Delacuvellerie A, Cyriaque V, Gobert S et al (2019) The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation. J Hazard Mater 380:120899

    Article  CAS  PubMed  Google Scholar 

  • DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Deng H, Fu Q, Li D, Zhang Y, He J, Feng D, Zhao Y, Du G, Yu H, Ge C (2021) Microplastic-associated biofilm in an intensive mariculture pond: Temporal dynamics of microbial communities, extracellular polymeric substances and impacts on microplastics properties. J Clean Prod 319:128774. https://doi.org/10.1016/j.jclepro.2021.128774

    Article  CAS  Google Scholar 

  • Derraik JG (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44:842–852

    Article  CAS  PubMed  Google Scholar 

  • Dudek KL, Cruz BN, Polidoro B, Neuer S (2020) Microbial colonization of microplastics in the Caribbean Sea. Limnol Oceanogr Lett 5:5–17

    Article  Google Scholar 

  • Eich A, Mildenberger T, Laforsch C, Weber M (2015) Biofilm and diatom succession on polyethylene (PE) and biodegradable plastic bags in two marine habitats: early signs of degradation in the pelagic and benthic zone? PLoS One 10:14312

    Article  Google Scholar 

  • Eriksen M, Mason S, Wilson S et al (2013a) Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar Pollut Bull 77:177–182

    Article  CAS  PubMed  Google Scholar 

  • Eriksen M, Maximenko N, Thiel M et al (2013b) Plastic pollution in the South Pacific subtropical gyre. Mar Pollut Bull 68:71–76

    Article  CAS  PubMed  Google Scholar 

  • Esmaeili A, Pourbabaee AA, Alikhani HA et al (2013) Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil. PLoS One 8:e71720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng L, He L, Jiang S et al (2020) Investigating the composition and distribution of microplastics surface biofilms in coral areas. Chemosphere 252:126565

    Article  CAS  PubMed  Google Scholar 

  • Fok L, Cheung PK (2015) Hong Kong at the Pearl River Estuary: a hotspot of microplastic pollution. Mar Pollut Bull 99:112–118

    Article  CAS  PubMed  Google Scholar 

  • Foulon V, Le Roux F, Lambert C et al (2016) Colonization of polystyrene microparticles by vibrio crassostreae: light and electron microscopic investigation. Environ Sci Technol 50:10988–10996

    Article  CAS  PubMed  Google Scholar 

  • Frère L, Maignien L, Chalopin M et al (2018) Microplastic bacterial communities in the Bay of Brest: influence of polymer type and size. Environ Pollut 242:614–625

    Article  PubMed  Google Scholar 

  • Gallowaya TS, Lewisa CN (2016) Marine microplastics spell big problems for future generations. Proc Natl Acad Sci USA 113:2331–2333

    Article  Google Scholar 

  • Gautam R, Bassi AS, Yanful EK (2007) Candida rugosa lipase-catalyzed polyurethane degradation in aqueous medium. Biotechnol Lett 29:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Goldstein MC, Rosenberg M, Cheng L (2012) Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect. Biol Lett 8:817–820

    Article  PubMed  PubMed Central  Google Scholar 

  • Gregory MR (1996) Plastic ‘scrubbers’ in hand cleansers: a further (and minor) source for marine pollution identified. Mar Pollut Bull 32:867–871

    Article  CAS  Google Scholar 

  • Gregory MR (2009) Environmental implications of plastic debris in marine settings—entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos Trans R Soc B Biol Sci 364:2013–2025

    Article  Google Scholar 

  • Guo X-P, Niu Z-S, Lu D-P et al (2017) Bacterial community structure in the intertidal biofilm along the Yangtze Estuary, China. Mar Pollut Bull 124:314–320

    Article  CAS  PubMed  Google Scholar 

  • Hamdan LJ, Coffin RB, Sikaroodi M, Greinert J, Treude T, Gillevet PM (2012) Ocean currents shape the microbiome of Arctic marine sediments. ISME J 2013 74 7(4):685–696. https://doi.org/10.1038/ismej.2012.143

    Article  CAS  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison JP, Schratzberger M, Sapp M, Osborn AM (2014) Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol 14:1–15

    Article  Google Scholar 

  • Harrison J, Hoellein T, Sapp M et al (2018) Microplastic-associated biofilms: a comparison of freshwater and marine environments. library.oapen.org

  • Heistad A, Scott T, Skaarer AM et al (2009) Virus removal by unsaturated wastewater filtration: effects of biofilm accumulation and hydrophobicity. Water Sci Technol 60:399–407

    Article  CAS  PubMed  Google Scholar 

  • Hirai N, Mun MK, Masuda T et al (2015) Atomic force microscopy analysis of biofilms formed on different plastics. Mater Technol 30:B57–B60. https://doi.org/10.1179/1753555714Y.0000000238

    Article  CAS  Google Scholar 

  • Hook AL, Chang CY, Yang J et al (2012) Combinatorial discovery of polymers resistant to bacterial attachment. Nat Biotechnol 309(30):868–875

    Article  Google Scholar 

  • Hossain R, Islam MT, Ghose A, Sahajwalla V (2022) Full circle: challenges and prospects for plastic waste management in Australia to achieve circular economy. J Clean Prod 368:133127

    Article  CAS  Google Scholar 

  • Hou L, Majumder EL-W (2021) Potential for and distribution of enzymatic biodegradation of polystyrene by environmental microorganisms. Materials 14:503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley R, Woodward J, Rothwell JJ (2018) Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nat Geosci 114(11):251–257

    Article  Google Scholar 

  • Jiang P, Zhao S, Zhu L, Li D (2018) Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary. Sci Total Environ 624:48–54

    Article  CAS  PubMed  Google Scholar 

  • Kasmuri N, Tarmizi NAA, Mojiri A (2022) Occurrence, impact, toxicity, and degradation methods of microplastics in environment—a review. Environ Sci Pollut Res 29:30820–30836

    Article  CAS  Google Scholar 

  • Kerfahi D, Harvey BP, Kim H et al (2022) Whole community and functional gene changes of biofilms on marine plastic debris in response to ocean acidification. Microb Ecol 1:1–13

    Google Scholar 

  • Kirstein IV, Kirmizi S, Wichels A et al (2016) Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar Environ Res 120:1–8

    Article  CAS  PubMed  Google Scholar 

  • Konopka A (2009) What is microbial community ecology? ISME J 311(3):1223–1230

    Article  Google Scholar 

  • Koutny M, Sancelme M, Dabin C et al (2006) Acquired biodegradability of polyethylenes containing pro-oxidant additives. Polym Degrad Stab 91:1495–1503

    Article  CAS  Google Scholar 

  • Krueger MC, Harms H, Schlosser D (2015) Prospects for microbiological solutions to environmental pollution with plastics. Appl Microbiol Biotechnol 99(21):8857–8874. https://doi.org/10.1007/S00253-015-6879-4

    Article  CAS  PubMed  Google Scholar 

  • Lacerda ALDF, Rodrigues LDS, van Sebille E et al (2019) Plastics in sea surface waters around the Antarctic Peninsula. Sci Rep 9:3977

    Article  PubMed  PubMed Central  Google Scholar 

  • Lagarde F, Olivier O, Zanella M, Daniel P, Hiard S, Caruso A (2016) Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ Pollut 215:331–339. https://doi.org/10.1016/j.envpol.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  • Law KL, Morét-Ferguson S, Maximenko NA et al (2010) Plastic accumulation in the North Atlantic subtropical gyre. Science 329:1185–1188

    Article  CAS  PubMed  Google Scholar 

  • Lebreton L-M, Greer S, Borrero JC (2012) Numerical modelling of floating debris in the world’s oceans. Mar Pollut Bull 64:653–661

    Article  CAS  PubMed  Google Scholar 

  • Li R, Hsieh CL, Young A et al (2015) Illumina synthetic long read sequencing allows recovery of missing sequences even in the “finished” C. elegans genome. Sci Rep 5:1–15

    Google Scholar 

  • Li WC, Tse H, Fok L (2016) Plastic waste in the marine environment: a review of sources, occurrence and effects. Sci Total Environ 566:333–349

    Article  PubMed  Google Scholar 

  • Li W, Zhang Y, Wu N, Zhao Z, Xu W, Ma Y, Niu Z (2019) Colonization Characteristics of Bacterial Communities on Plastic Debris Influenced by Environmental Factors and Polymer Types in the Haihe Estuary of Bohai Bay. China Environ Sci Technol 53(18):10763–10773. https://doi.org/10.1021/ACS

    Article  CAS  PubMed  Google Scholar 

  • Lobelle D, Cunliffe M (2011) Early microbial biofilm formation on marine plastic debris. Mar Pollut Bull 62:197–200

    Article  CAS  PubMed  Google Scholar 

  • Lopez Lozano R, Mouat J (2009) Marine litter in the Northeast Atlantic Region: assessment and priorities for response. MAP Library 27: 210–215.

    Google Scholar 

  • MacHado MC, Cheng D, Tarquinio KM, Webster TJ (2010) Nanotechnology: pediatric applications. Pediatr Res 675(67):500–504

    Article  Google Scholar 

  • Masaki K, Kamini NR, Ikeda H, Iefuji H (2005) Cutinase-Like Enzyme from the Yeast Cryptococcus sp. Strain S-2 Hydrolyzes Polylactic Acid and Other Biodegradable Plastics. Appl Environ Microbiol 71(11):7548–7550. https://doi.org/10.1128/AEM.71.11.7548-7550.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masó M, Garcés E, Pagès F, Camp J (2003) Los plásticos flotantes son potenciales vectores de dispersión de especies formadoras de proliferaciones algales nocivas. Sci Mar 67:107–111

    Article  Google Scholar 

  • McCauley SJ, Bjorndal KA (1999) Conservation implications of dietary dilution from debris ingestion: sublethal effects in post-hatchling loggerhead sea turtles. Conserv Biol 13:925–929

    Article  Google Scholar 

  • McCormick A, Hoellein TJ, Mason SA, Schluep J, Kelly JJ (2014) Microplastic is an Abundant and Distinct Microbial Habitat in an Urban River. Environ Sci Technol 48(20):11863–11871. https://doi.org/10.1021/es503610r

    Article  CAS  PubMed  Google Scholar 

  • Miao L, Wang P, Hou J et al (2019) Distinct community structure and microbial functions of biofilms colonizing microplastics. Sci Total Environ 650:2395–2402

    Article  CAS  PubMed  Google Scholar 

  • Miao L, Wang C, Adyel TM et al (2020) Microbial carbon metabolic functions of biofilms on plastic debris influenced by the substrate types and environmental factors. Environ Int 143:106007

    Article  CAS  PubMed  Google Scholar 

  • Miao L, Yu Y, Adyel TM et al (2021) Distinct microbial metabolic activities of biofilms colonizing microplastics in three freshwater ecosystems. J Hazard Mater 403:123577

    Article  CAS  PubMed  Google Scholar 

  • Mir TUG, Wani AK, Akhtar N, Shukla S (2022) CRISPR/Cas9: regulations and challenges for law enforcement to combat its dual-use. Forensic Sci Int 334:111274

    Article  CAS  PubMed  Google Scholar 

  • Moore CJ (2008) Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environ Res 108:131–139

    Article  CAS  PubMed  Google Scholar 

  • Moore CJ, Moore SL, Weisberg SB et al (2002) A comparison of neustonic plastic and zooplankton abundance in southern California’s coastal waters. Mar Pollut Bull 44:1035–1038

    Article  CAS  PubMed  Google Scholar 

  • Mouafo Tamnou EB, Tamsa Arfao A, Nougang ME et al (2021) Biodegradation of polyethylene by the bacterium Pseudomonas aeruginosa in acidic aquatic microcosm and effect of the environmental temperature. Environ Chall 3:100056

    Article  CAS  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 731(73):127–141

    Article  Google Scholar 

  • Naqash N, Prakash S, Kapoor D, Singh R (2020) Interaction of freshwater microplastics with biota and heavy metals: a review. Environ Chem Lett 18(6):1813–1824. https://doi.org/10.1007/S10311-020-01044-3

    Article  CAS  Google Scholar 

  • Ncube LK, Ude AU, Ogunmuyiwa EN et al (2021) An overview of plastic waste generation and management in food packaging industries. Recycling 6:12

    Article  Google Scholar 

  • Nourollahi A, Sedighi-Khavidak S, Mokhtari M et al (2019) Isolation and identification of low-density polyethylene (LDPE) biodegrading bacteria from waste landfill in Yazd. Int J Environ Stud 76:236–250

    Article  CAS  Google Scholar 

  • O’Neill A, Araújo R, Casal M et al (2007) Effect of the agitation on the adsorption and hydrolytic efficiency of cutinases on polyethylene terephthalate fibres. Enzym Microb Technol 40:1801–1805

    Article  Google Scholar 

  • Obbard RW, Sadri S, Wong YQ et al (2014) Global warming releases microplastic legacy frozen in Arctic Sea ice. Earths Future 2:315–320

    Article  Google Scholar 

  • Oberbeckmann S, Loeder MGJ, Gerdts G, Osborn MA (2014) Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiol Ecol 90:478–492

    Article  CAS  PubMed  Google Scholar 

  • Oberbeckmann S, Osborn AM, Duhaime MB (2016) Microbes on a bottle: substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS One 11:e0159289

    Article  PubMed  PubMed Central  Google Scholar 

  • Oberbeckmann S, Kreikemeyer B, Labrenz M (2018) Environmental factors support the formation of specific bacterial assemblages on microplastics. Front Microbiol 8:2709

    Article  PubMed  PubMed Central  Google Scholar 

  • Oberbeckmann S, Labrenz M (2020) Marine Microbial Assemblages on Microplastics: Diversity, Adaptation, and Role in Degradation. Httpsdoiorg101146annurev-Mar-010419-010633 12:209–232. https://doi.org/10.1146/ANNUREV-MARINE-010419-010633

    Article  Google Scholar 

  • Ogonowski M, Motiei A, Ininbergs K, Hell E, Gerdes Z, Udekwu KI, Bacsik Z, Gorokhova E (2018) Evidence for selective bacterial community structuring on microplastics. Environ Microbiol 20(8):2796–2808. https://doi.org/10.1111/1462-2920.14120

    Article  CAS  PubMed  Google Scholar 

  • Ojha N, Pradhan N, Singh S et al (2017) Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Sci Rep 7:39515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oni BA, Ayeni AO, Agboola O et al (2020) Comparing microplastics contaminants in (dry and raining) seasons for Ox-Bow Lake in Yenagoa, Nigeria. Ecotoxicol Environ Saf 198:110656

    Article  CAS  PubMed  Google Scholar 

  • Onyena AP, Aniche DC, Ogbolu BO et al (2022) Governance strategies for mitigating microplastic pollution in the marine environment: a review. Microplastics 1:15–46

    Article  Google Scholar 

  • Parthasarathy A, Miranda RR, Eddingsaas NC et al (2022) Polystyrene degradation by Exiguobacterium sp. RIT 594: preliminary evidence for a pathway containing an atypical oxygenase. Microorganisms 10:1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phelan AA, Ross H, Setianto NA et al (2020) Ocean plastic crisis—mental models of plastic pollution from remote Indonesian coastal communities. PLoS One 15:e0236149

    Article  CAS  PubMed  Google Scholar 

  • Pinnell LJ, Turner JW (2020) Temporal changes in water temperature and salinity drive the formation of a reversible plastic-specific microbial community. FEMS Microbiol Ecol 96:230

    Article  Google Scholar 

  • Pinto M, Langer TM, Hüffer T et al (2019) The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession. PLoS One 14:e0217165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pompilio A, Piccolomini R, Picciani C et al (2008) Factors associated with adherence to and biofilm formation on polystyrene by Stenotrophomonas maltophilia: the role of cell surface hydrophobicity and motility. FEMS Microbiol Lett 287:41–47

    Article  CAS  PubMed  Google Scholar 

  • Qiang L, Cheng J, Mirzoyan S, Kerkhof LJ, Häggblom MM (2021) Characterization of Microplastic-Associated Biofilm Development along a Freshwater-Estuarine Gradient. Environ Sci Technol 55(24):16402–16412. https://doi.org/10.1021/acs.est.1c04108

    Article  CAS  PubMed  Google Scholar 

  • Reisser J, Slat B, Noble K et al (2015) The vertical distribution of buoyant plastics at sea: an observational study in the North Atlantic Gyre. Biogeosciences 12:1249–1256

    Article  Google Scholar 

  • Rieck A, Herlemann DPR, Jürgens K, Grossart HP (2015) Particle-associated differ from free-living bacteria in surface waters of the baltic sea. Front Microbiol 6(DEC):1297. https://doi.org/10.3389/FMICB.2015.01297

  • Rojas-Parrales A, Orantes-Sibaja T, Redondo-Gómez C, Vega-Baudrit J (2018) Biological degradation of plastics: polyethylene biodegradation by aspergillus and streptomyces species-a review. ACS Symp Ser 1302:69–79

    Article  CAS  Google Scholar 

  • Ronkvist ÅM, Xie W, Lu W, Gross RA (2009) Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules 42:5128–5138

    Article  CAS  Google Scholar 

  • Rummel CD, Jahnke A, Gorokhova E et al (2017) Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ Sci Technol Lett 4:258–267

    Article  CAS  Google Scholar 

  • Ryan PG, Moore CJ, van Franeker JA, Moloney CL (2009) Monitoring the abundance of plastic debris in the marine environment. Philos Trans R Soc B Biol Sci 364:1999–2012

    Article  CAS  Google Scholar 

  • Sameshima-Yamashita Y, Ueda H, Koitabashi M, Kitamoto H (2019) Pretreatment with an esterase from the yeast Pseudozyma Antarctica accelerates biodegradation of plastic mulch film in soil under laboratory conditions. J Biosci Bioeng 127:93–98

    Article  CAS  PubMed  Google Scholar 

  • Santo M, Weitsman R, Sivan A (2013) The role of the copper-binding enzyme—laccase—in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int Biodeterior Biodegrad 84:204–210

    Article  CAS  Google Scholar 

  • Schlundt C, Mark Welch JL, Knochel AM et al (2020) Spatial structure in the “Plastisphere”: molecular resources for imaging microscopic communities on plastic marine debris. Mol Ecol Resour 20:620–634

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Sharma V, Chatterjee S (2021) Microplastics in the Mediterranean Sea: sources, pollution intensity, sea health, and regulatory policies. Front Mar Sci 8:15323

    Article  Google Scholar 

  • Shen M, Zhu Y, Zhang Y et al (2019) Micro(nano)plastics: unignorable vectors for organisms. Mar Pollut Bull 139:328–331

    Article  CAS  PubMed  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoodley P, Cargo R, Rupp CJ et al (2002) Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol 296(29):361–367

    Article  Google Scholar 

  • Sun X, Chen B, Xia B, Li Q, Zhu L, Zhao X, Gao Y, Qu K (2020) Impact of mariculture-derived microplastics on bacterial biofilm formation and their potential threat to mariculture: A case in situ study on the Sungo Bay. China Environ Pollut 262:114336. https://doi.org/10.1016/j.envpol.2020.114336

    Article  CAS  PubMed  Google Scholar 

  • Tachibana K, Hashimoto K, Yoshikawa M, Okawa H (2010) Isolation and characterization of microorganisms degrading nylon 4 in the composted soil. Polym Degrad Stab 95:912–917

    Article  CAS  Google Scholar 

  • Thompson RC (2006) Plastic debris in the marine environment: consequences and solutions. Mar Nat Conserv Eur 193:107–115

    Google Scholar 

  • Tu C, Chen T, Zhou Q et al (2020) Biofilm formation and its influences on the properties of microplastics as affected by exposure time and depth in the seawater. Sci Total Environ 734:139237

    Article  CAS  PubMed  Google Scholar 

  • Valm AM, Mark Welch JL, Borisy GG (2012) CLASI-FISH: principles of combinatorial labeling and spectral imaging. Syst Appl Microbiol 35:496–502. https://doi.org/10.1016/J.SYAPM.2012.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veerasingam S, Ranjani M, Venkatachalapathy R et al (2020) Microplastics in different environmental compartments in India: analytical methods, distribution, associated contaminants and research needs. TrAC Trends Anal Chem 133:116071

    Article  CAS  Google Scholar 

  • Venkataraman A, Bassis CM, Beck JM, Young VB, Curtis JL, Huffnagle GB, Schmidt TM (2015) Application of a neutral community model to assess structuring of the human lung microbiome. Am Soc Microbiol 6(1). https://doi.org/10.1128/mBio.02284-14

  • Wani AK, Akhtar N, Naqash N et al (2022a) Bioprospecting culturable and unculturable microbial consortia through metagenomics for bioremediation. Clean Chem Eng 7:11234

    Google Scholar 

  • Wani AK, Akhtar N, Singh R et al (2022b) Prospects of advanced metagenomics and meta-omics in the investigation of phytomicrobiome to forecast beneficial and pathogenic response. Mol Biol Rep 12:3241

    Google Scholar 

  • Wani AK, Akhtar N, Singh R et al (2022c) Genome centric engineering using ZFNs, TALENs and CRISPR-Cas9 systems for trait improvement and disease control in Animals. Vet Res Commun 47:1–16

    Article  PubMed  Google Scholar 

  • Wani AK, Hashem NM, Akhtar N et al (2022d) Understanding microbial networks of farm animals through genomics, metagenomics and other meta-omic approaches for livestock wellness and sustainability. Ann Anim Sci 22:234–255

    Article  Google Scholar 

  • Wani AK, Rahayu F, Kadarwati FT et al (2022e) Metagenomic screening strategies for bioprospecting enzymes from environmental samples. IOP Conf Ser Earth Environ Sci 974:012003

    Article  Google Scholar 

  • Wani AK, Akhtar N, Naqash N et al (2023) Discovering untapped microbial communities through metagenomics for microplastic remediation: recent advances, challenges, and way forward. Environ Sci Pollut Res 30:1–24

    Article  Google Scholar 

  • Webb HK, Arnott J, Crawford RJ, Ivanova EP (2013) Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers 5:1–18

    Article  Google Scholar 

  • Weinstein JE, Crocker BK, Gray AD (2016) From macroplastic to microplastic: degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environ Toxicol Chem 35:1632–1640

    Article  CAS  PubMed  Google Scholar 

  • Wen B, Liu JH, Zhang Y, Zhang HR, Gao JZ, Chen ZZ (2020) Community structure and functional diversity of the plastisphere in aquaculture waters: Does plastic color matter? Sci Total Environ 740:140082. https://doi.org/10.1016/J.SCITOTENV.2020.140082

    Article  CAS  PubMed  Google Scholar 

  • Wright SL, Rowe D, Thompson RC, Galloway TS (2013) Microplastic ingestion decreases energy reserves in marine worms. Curr Biol 23:R1031–R1033

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Wang S, Gao F et al (2019) Marine microplastic-associated bacterial community succession in response to geography, exposure time, and plastic type in China’s coastal seawaters. Mar Pollut Bull 145:278–286

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Liu W, Zhang Z et al (2020) Microplastics provide new microbial niches in aquatic environments. Appl Microbiol Biotechnol 104:6501–6511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalasiewicz J, Waters CN, Ivar do Sul JA et al (2016) The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. Anthropocene 13:4–17

    Article  Google Scholar 

  • Zerhouni K, Abbouni B, Kanoun K et al (2018) Isolation and identification of low density polythene-degrading bacteria from soil of North West of Algeria. South Asian J Exp Biol 8:76–82

    Article  CAS  Google Scholar 

  • Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol 47:7137–7146

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Hamidian AH, Tubić A et al (2021) Understanding plastic degradation and microplastic formation in the environment: a review. Environ Pollut 274:116554

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rattandeep Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wani, A.K., Naqash, N., Akhtar, N., Mir, T.u.G., Mir, B.A., Singh, R. (2024). Plastisphere: Marine Microbial Assemblages for Biodegradation of Microplastics. In: Karnwal, A., Mohammad Said Al-Tawaha, A.R. (eds) Microbial Applications for Environmental Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-97-0676-1_6

Download citation

Publish with us

Policies and ethics