Skip to main content

Abiotic Stress in Plants: Challenges and Strategies for Enhancing Plant Growth and Development

  • Chapter
  • First Online:
Plant Adaptation to Abiotic Stress: From Signaling Pathways and Microbiomes to Molecular Mechanisms

Abstract

Plants face diverse environmental challenges, including water scarcity, salinity, extreme temperatures, and nutrient deficiency, impeding their growth and productivity. Plants develop molecular mechanisms for adaptation to survive such conditions. Understanding these processes is pivotal for enhancing plant tolerance. This chapter thoroughly investigates the challenges and strategies for improving plant growth and development in stressful environments, delving into the mechanisms of plant adaptation to these stressors. Additionally, it identifies abiotic stress candidate genes for stress tolerance, which are crucial for developing stress-resistant crops.

Moreover, the chapter underscores the paramount importance of implementing strategies to ensure food security amid a growing global population and increased environmental abiotic stress. It highlights the critical role of investigating plant responses to abiotic stress in addressing global food security challenges amid climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal M, Sahi C, Katiyar-Agarwal S, Agarwal S, Young T, Gallie DR, Sharma VM, Ganesan K, Grover A (2003) Molecular characterization of rice hsp101: complementation of yeast hsp104 mutation by disaggregation of protein granules and differential expression in indica and japonica rice types. Plant Mol Biol 51:543–553

    Article  CAS  PubMed  Google Scholar 

  • Babbar R, Tiwari LD, Mishra RC, Shimphrui R, Singh AA, Goyal I, Rana S, Kumar R, Sharma V, Tripathi G (2023) Arabidopsis plants overexpressing additional copies of heat shock protein Hsp101 showed high heat tolerance and endo-gene silencing. Plant Sci 330:111639

    Article  CAS  PubMed  Google Scholar 

  • Bahmani R, Modareszadeh M, Kim D, Hwang S (2019) Overexpression of tobacco UBQ2 increases cd tolerance by decreasing cd accumulation and oxidative stress in tobacco and Arabidopsis. Environ Exp Bot 166:103805

    Article  CAS  Google Scholar 

  • Barberon M, Zelazny E, Robert S, Conéjéro G, Curie C, Friml J, Vert G (2011) Monoubiquitin-dependent endocytosis of the iron-regulated transporter 1 (IRT1) transporter controls iron uptake in plants. Proc Natl Acad Sci 108(32):E450–E458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishopp A, Lynch JP (2015) The hidden half of crop yields. Nat Plants 1(8):1–2

    Article  Google Scholar 

  • Bose J, Xie Y, Shen W, Shabala S (2013) Haem oxygenase modifies salinity tolerance in Arabidopsis by controlling K+ retention via regulation of the plasma membrane H+-ATPase and by altering SOS1 transcript levels in roots. J Exp Bot 64(2):471–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardi T (2016) Cisgenesis and genome editing: combining concepts and efforts for a smarter use of genetic resources in crop breeding. Plant Breed 135(2):139–147

    Article  CAS  Google Scholar 

  • Chandra A, Dubey A (2010) Effect of ploidy levels on the activities of Δ1-pyrroline-5-carboxylate synthetase, superoxide dismutase and peroxidase in Cenchrus species grown under water stress. Plant Physiol Biochem 48(1):27–34

    Article  CAS  PubMed  Google Scholar 

  • Chang C-C, Huang P-S, Lin H-R, Lu C-H (2007) Transactivation of protein expression by rice HSP101 in planta and using Hsp101 as a selection marker for transformation. Plant Cell Physiol 48(8):1098–1107

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary J, Khatri P, Singla P, Kumawat S, Kumari A, Vikram A, Jindal SK, Kardile H, Kumar R, Sonah H (2019) Advances in omics approaches for abiotic stress tolerance in tomato. Biology 8(4):90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheeseman J (2016) Food security in the face of salinity, drought, climate change, and population growth. In: Halophytes for food security in dry lands. Elsevier, pp 111–123

    Chapter  Google Scholar 

  • Chen RF, Zhang FL, Zhang QM, Sun QB, Dong XY, Shen RF (2012) Aluminium–phosphorus interactions in plants growing on acid soils: does phosphorus always alleviate aluminium toxicity? J Sci Food Agric 92(5):995–1000

    Article  CAS  PubMed  Google Scholar 

  • Cochrane TT, Sanchez PA (1982) Land resources, soils and their management in the Amazon region: a state of knowledge report. Agriculture and Land Use Research, Amazonia, pp 137–209

    Google Scholar 

  • Cortés AJ, López-Hernández F, Blair MW (2022) Genome–environment associations, an innovative tool for studying heritable evolutionary adaptation in orphan crops and wild relatives. Front Genet 13:910386

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143(4):1739–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshmukh R, Sonah H, Patil G, Chen W, Prince S, Mutava R, Vuong T, Valliyodan B, Nguyen HT (2014) Integrating omic approaches for abiotic stress tolerance in soybean. Front Plant Sci 5:244

    Article  PubMed  PubMed Central  Google Scholar 

  • Eldakak M, Milad SIM, Nawar AI, Rohila JS (2013) Proteomics: a biotechnology tool for crop improvement. Front Plant Sci 4:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23(1):412–427

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124(4):1854–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan C, Huang Y-H, Cen H-F, Cui X, Tian D-Y, Zhang Y-W (2019) Overexpression of the Lolium perenne L. delta1-pyrroline 5-carboxylate synthase (LpP5CS) gene results in morphological alterations and salinity tolerance in switchgrass (Panicum virgatum L.). PLoS One 14(7):e0219669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerzoni JTS, Belintani NG, Moreira RMP, Hoshino AA, Domingues DS, Filho JCB, Vieira LGE (2014) Stress-induced Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene confers tolerance to salt stress in transgenic sugarcane. Acta Physiol Plant 36:2309–2319

    Article  CAS  Google Scholar 

  • Gurley WB (2000) HSP101: a key component for the acquisition of thermotolerance in plants. Plant Cell 12(4):457–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Extreme temperature responses, oxidative stress and antioxidant defense in plants. Abiotic Stress 13:169–205

    Google Scholar 

  • Hassan MU, Chattha MU, Khan I, Chattha MB, Barbanti L, Aamer M, Iqbal MM, Nawaz M, Mahmood A, Ali A (2021) Heat stress in cultivated plants: nature, impact, mechanisms, and mitigation strategies—a review. Plant Biosyst 155(2):211–234

    Article  Google Scholar 

  • Hinz M, Wilson IW, Yang J, Buerstenbinder K, Llewellyn D, Dennis ES, Sauter M, Dolferus R (2010) Arabidopsis RAP2. 2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiol 153(2):757–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savouré A, Jaoua S (2005) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169(4):746–752

    Article  CAS  Google Scholar 

  • Ishangulyyev R, Kim S, Lee SH (2019) Understanding food loss and waste—why are we losing and wasting food? Food Secur 8(8):297

    Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280(5360):104–106

    Article  CAS  PubMed  Google Scholar 

  • Jambor A, Török A (2019) The economics of Arundo donax—a systematic literature review. Sustain For 11(15):4225

    Article  Google Scholar 

  • Kausar R, Wang X, Komatsu S (2022) Crop proteomics under abiotic stress: from data to insights. Plan Theory 11(21):2877

    Google Scholar 

  • Kitashiba H, Ishizaka T, Isuzugawa K, Nishimura K, Suzuki T (2004) Expression of a sweet cherry DREB1/CBF ortholog in Arabidopsis confers salt and freezing tolerance. J Plant Physiol 161(10):1171–1176

    Article  CAS  PubMed  Google Scholar 

  • Leisinger, K. M., Schmitt, K., & Pandya-Lorch, R. (2002). Six billion and counting: population growth and food security in the 21st century

    Google Scholar 

  • Liaghat S, Balasundram SK (2010) A review: the role of remote sensing in precision agriculture. Am J Agric Biol Sci 5(1):50–55

    Article  Google Scholar 

  • Lin C-C, Chao Y-T, Chen W-C, Ho H-Y, Chou M-Y, Li Y-R, Wu Y-L, Yang H-A, Hsieh H, Lin C-S (2019) Regulatory cascade involving transcriptional and N-end rule pathways in rice under submergence. Proc Natl Acad Sci 116(8):3300–3309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Li W, Cheng J, Hou L (2014) Expression analysis and functional characterization of a cold-responsive gene COR15A from Arabidopsis thaliana. Acta Physiol Plant 36:2421–2432

    Article  CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6(6):273–278

    Article  CAS  PubMed  Google Scholar 

  • Mall RK, Gupta A, Sonkar G (2017) Effect of climate change on agricultural crops. In: Current developments in biotechnology and bioengineering. Elsevier, pp 23–46

    Chapter  Google Scholar 

  • Marinoudi V, Sørensen CG, Pearson S, Bochtis D (2019) Robotics and labour in agriculture. A context consideration. Biosyst Eng 184:111–121

    Article  Google Scholar 

  • McLoughlin F, Basha E, Fowler ME, Kim M, Bordowitz J, Katiyar-Agarwal S, Vierling E (2016) Class I and II small heat shock proteins together with HSP101 protect protein translation factors during heat stress. Plant Physiol 172(2):1221–1236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2 C. Nature 458(7242):1158–1162

    Article  CAS  PubMed  Google Scholar 

  • Mushtaq M, Bhat JA, Mir ZA, Sakina A, Ali S, Singh AK, Tyagi A, Salgotra RK, Dar AA, Bhat R (2018) CRISPR/Cas approach: a new way of looking at plant-abiotic interactions. J Plant Physiol 224:156–162

    Article  PubMed  Google Scholar 

  • Muthayya S, Sugimoto JD, Montgomery S, Maberly GF (2014) An overview of global rice production, supply, trade, and consumption. Ann N Y Acad Sci 1324(1):7–14

    Article  PubMed  Google Scholar 

  • Myouga F, Motohashi R, Kuromori T, Nagata N, Shinozaki K (2006) An Arabidopsis chloroplast-targeted Hsp101 homologue, APG6, has an essential role in chloroplast development as well as heat-stress response. Plant J 48(2):249–260

    Article  CAS  PubMed  Google Scholar 

  • Nicholaides JJ III, Bandy DE, Sanchez PA, Benites JR, Villachica JH, Coutu AJ, Valverde CS (1985) Agricultural alternatives for the Amazon Basin. Bioscience 35(5):279–285

    Article  Google Scholar 

  • Paudel S, Pokharel NP, Adhikari S, Poudel S (2021) Heat and drought stress effect in wheat genotypes: a review. Food Agri Econ Rev 1(2):77–79

    Article  Google Scholar 

  • Pehlivan N, Sun L, Jarrett P, Yang X, Mishra N, Chen L, Kadioglu A, Shen G, Zhang H (2016) Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants. Plant Cell Physiol 57(5):1069–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira M, Oliveira AM (2020) Poverty and food insecurity may increase as the threat of COVID-19 spreads. Public Health Nutr 23(17):3236–3240

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinter PJ Jr, Hatfield JL, Schepers JS, Barnes EM, Moran MS, Daughtry CST, Upchurch DR (2003) Remote sensing for crop management. Photogramm Eng Remote Sens 69(6):647–664

    Article  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. The Plant Genome 5(3)

    Google Scholar 

  • Porcel R, Azcón R, Ruiz-Lozano JM (2004) Evaluation of the role of genes encoding for Δ1-pyrroline-5-carboxylate synthetase (P5CS) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. Physiol Mol Plant Pathol 65(4):211–221

    Article  CAS  Google Scholar 

  • Rajput M, Choudhary K, Kumar M, Vivekanand V, Chawade A, Ortiz R, Pareek N (2021) RNA interference and CRISPR/Cas gene editing for crop improvement: paradigm shift towards sustainable agriculture. Plan Theory 10(9):1914

    CAS  Google Scholar 

  • Reynolds TW, Waddington SR, Anderson CL, Chew A, True Z, Cullen A (2015) Environmental impacts and constraints associated with the production of major food crops in sub-Saharan Africa and South Asia. Food Secur 7:795–822

    Article  Google Scholar 

  • Rogelj J, Hare W, Lowe J, Van Vuuren DP, Riahi K, Matthews B, Hanaoka T, Jiang K, Meinshausen M (2011) Emission pathways consistent with a 2 C global temperature limit. Nat Clim Chang 1(8):413–418

    Article  Google Scholar 

  • Shi H, Lee B, Wu S-J, Zhu J-K (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21(1):81–85

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Mishra S, Bohra A, Joshi R, Siddique KHM (2018) Crop phenomics for abiotic stress tolerance in crop plants. In: Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants. Elsevier, pp 277–296

    Chapter  Google Scholar 

  • Song C, Je J, Hong JK, Lim CO (2014) Ectopic expression of an Arabidopsis dehydration-responsive element-binding factor DREB2C improves salt stress tolerance in crucifers. Plant Cell Rep 33:1239–1254

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126(1):45–51

    Article  CAS  Google Scholar 

  • Tan S, Han R, Li P, Yang G, Li S, Zhang P, Wang W-B, Zhao W-Z, Yin L-P (2015) Over-expression of the mx IRT1 gene increases iron and zinc content in rice seeds. Transgenic Res 24:109–122

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Wu W, Yang P, Zhou Q, Chen Z (2010) Recent progresses in monitoring crop spatial patterns by using remote sensing technologies. Sci Agric Sin 43(14):2879–2888

    Google Scholar 

  • Tanumihardjo SA, McCulley L, Roh R, Lopez-Ridaura S, Palacios-Rojas N, Gunaratna NS (2020) Maize agro-food systems to ensure food and nutrition security in reference to the sustainable development goals. Glob Food Sec 25:100327

    Article  Google Scholar 

  • Tao Y, Zhao X, Mace E, Henry R, Jordan D (2019) Exploring and exploiting pan-genomics for crop improvement. Mol Plant 12(2):156–169

    Article  CAS  PubMed  Google Scholar 

  • Thalhammer A, Bryant G, Sulpice R, Hincha DK (2014) Disordered cold regulated15 proteins protect chloroplast membranes during freezing through binding and folding, but do not stabilize chloroplast enzymes in vivo. Plant Physiol 166(1):190–201

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomashow MF (2001) So what’s new in the field of plant cold acclimation? Lots! Plant Physiol 125(1):89–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomlinson I (2013) Doubling food production to feed the 9 billion: a critical perspective on a key discourse of food security in the UK. J Rural Stud 29:81–90

    Article  Google Scholar 

  • Torkamaneh D, Laroche J, Belzile F (2020) Fast-GBS v2. 0: an analysis toolkit for genotyping-by-sequencing data. Genome 63(11):577–581

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27(9):522–530

    Article  CAS  PubMed  Google Scholar 

  • Verma V, Vishal B, Kohli A, Kumar PP (2021) Systems-based rice improvement approaches for sustainable food and nutritional security. Plant Cell Rep 40(11):2021–2036

    Article  CAS  PubMed  Google Scholar 

  • Voesenek L, Bailey-Serres J (2013) Flooding tolerance: O2 sensing and survival strategies. Curr Opin Plant Biol 16(5):647–653

    Article  CAS  PubMed  Google Scholar 

  • Wassmann R, Jagadish SVK, Heuer S, Ismail A, Redona E, Serraj R, Singh RK, Howell G, Pathak H, Sumfleth K (2009) Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. Adv Agron 101:59–122

    Article  Google Scholar 

  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21–30

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Chen C, Du J, Liu H, Cui Y, Zhang Y, He Y, Wang Y, Chu C, Feng Z (2012) Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiol 158(2):790–800

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442(7103):705–708

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Chen Z-Z, Zhou X-F, Yin H-B, Li X, Xin X-F, Hong X-H, Zhu J-K, Gong Z (2009) Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2(1):22–31

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Wu H, Wang N, Li J, Zhao W, Du J, Wang D, Ling H-Q (2008) FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res 18(3):385–397

    Article  CAS  PubMed  Google Scholar 

  • Yue Y, Zhang M, Zhang J, Duan L, Li Z (2012) SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio. J Plant Physiol 169(3):255–261

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Wang X (2011) Overexpression of GASA5 increases the sensitivity of Arabidopsis to heat stress. J Plant Physiol 168(17):2093–2101

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Lü S, Fu F, Lan H, Zhang Z, Zhang S, Tang Q, Wu Y (2011) Over-expression of Sub1A, a submergence tolerance gene from rice, confers enhanced hypoxic stress tolerance in transgenic tobacco plants. Afr J Biotechnol 10(78):17934–17939

    CAS  Google Scholar 

  • Zhu B, Su J, Chang M, Verma DPS, Fan Y-L, Wu R (1998) Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant Sci 139(1):41–48

    Article  CAS  Google Scholar 

  • Zhu F, Bulut M, Cheng Y, Alseekh S, Fernie AR (2023) Metabolite-based genome-wide association studies of large-scale metabolome analysis to illustrate alterations in the metabolite landscape of plants upon responses to stresses. In: Plant abiotic stress signaling. Springer, pp 241–255

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaffai, R., Ganesan, M., Cherif, A. (2024). Abiotic Stress in Plants: Challenges and Strategies for Enhancing Plant Growth and Development. In: Plant Adaptation to Abiotic Stress: From Signaling Pathways and Microbiomes to Molecular Mechanisms. Springer, Singapore. https://doi.org/10.1007/978-981-97-0672-3_1

Download citation

Publish with us

Policies and ethics