Skip to main content

Wideband High-Gain Franklin Antenna Array for 5G Millimeter-Wave Applications

  • Conference paper
  • First Online:
Evolution in Signal Processing and Telecommunication Networks (ICMEET 2023)

Abstract

In this paper, a novel six-element 3\(\,\times \,\)2 Franklin array antenna is proposed for 5G millimeter-wave applications. Coaxial feed was used to excite the six elements. The parameters of the Franklin array elements are fine-tuned to achieve a high-gain antenna performance as desired. The suggested antenna employs Rogers RT Duroid substrate, which enables a broad frequency range from 25.61 to 34.62 GHz, covering a 5G millimeter-wave frequency band n257/n258/n261. The antenna dimensions are 19 mm\(^3\) \(\times \) 19 mm\(^3\) \(\times \) 1.6 mm\(^3\). The proposed antenna has 29.91% fractional bandwidth along with a peak gain of 10.64 dBi at 28 GHz frequency and it is well-suited for wideband and high-gain mm-wave applications in the context of 5G FR-2.

These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khan QU et al (2016) Higher order modes: a solution for high gain, wide band patch antennas for different vehicular applications. IEEE Trans Veh Technol 66(5):3548–3554

    Google Scholar 

  2. Palepu NR, Kumar J (2023) Truncated rectangular radiator with meander and dumbbell slot on partial ground. In: 2023 International conference on microwave, optical, and communication engineering (ICMOCE). IEEE

    Google Scholar 

  3. Ravi KC, Kumar J (2022) Multi-directional wideband unit-element MIMO antenna for FR-2 band 5G array applications. Iran J Sci Technol Trans Electr Eng 46:311–317

    Article  Google Scholar 

  4. Li H et al (2020) Leaky-wave antennas as metal rims of mobile handset for mm-wave communications. IEEE Trans Antennas Propag 69(7):4142–4147

    Article  Google Scholar 

  5. Jihoon B, Jaehoon C (2020) A compact hemispherical beam-coverage phased array antenna unit for 5G mm-wave applications. IEEE Access 8:139715–139726

    Article  Google Scholar 

  6. Ravi KC, Kumar J, Elwi TA, Ali MM (2022) Compact MIMO antenna for 5G applications. In: IEEE ANDESCON, Barranquilla, Colombia, pp 1–6. https://doi.org/10.1109/ANDESCON56260.2022.9989598

  7. Kumar J (2016) Compact MIMO antenna. Microwave Opt Technol Lett 58:1294–1298

    Article  Google Scholar 

  8. Nej S, Ghosh A, Ahmad S, Kumar J, Ghaffar A, Hussein MI (2022) Design and characterization of 10-elements MIMO antenna with improved isolation and radiation characteristics for mm-Wave 5G applications. IEEE Access 10:125086–125101. https://doi.org/10.1109/ACCESS.2022.3225446

    Article  Google Scholar 

  9. Ao L, Kwai-Man L (2020) Single-layer wideband end-fire dual-polarized antenna array for device-to-device communication in 5G wireless systems. IEEE Trans Veh Technol 69(5):5142–5150

    Article  Google Scholar 

  10. Dzagbletey PA, Jung Y-B (2018) Stacked microstrip linear array for millimeter-wave 5G baseband communication. IEEE Antennas Wirel Propag Lett 17(5):780–783

    Article  Google Scholar 

  11. Palepu NR, Kumar J (2023) Neutralized meander line patch antipodal Vivaldi defected ground millimeter-wave (mm-wave) antenna array. AEU-Int J Electron Commun 166:154663

    Article  Google Scholar 

  12. Farahat AE, Hussein KFA (2022) Dual-band (28/38 GHz) wideband MIMO antenna for 5G mobile applications. IEEE Access 10:32213–32223

    Article  Google Scholar 

  13. Guo YJ et al (2021) Quasi-optical multi-beam antenna technologies for B5G and 6G mmWave and THz networks: a review. IEEE Open J Antennas Propag 2:807–830

    Article  Google Scholar 

  14. Alobaidy HAH et al (2022) Wireless transmissions, propagation and channel modelling for IoT technologies: applications and challenges. IEEE Access 10:24095–24131

    Article  Google Scholar 

  15. Zhu Q et al (2017) Substrate-integrated-waveguide-fed array antenna covering 57–71 GHz band for 5G applications. IEEE Trans Antennas Propag 65(12):6298–6306

    Article  Google Scholar 

  16. Milan P, Alois H, Miloš M (2005) Collinear microstrip patch antenna. Radioeng-Prague 14(4):40

    Google Scholar 

  17. Polivka M, Holub A (2006) Planar version of collinear microstrip patch antenna. In: 2006 International conference on microwaves, radar and wireless communications. IEEE

    Google Scholar 

  18. Klaus S (1982) Microstrip-franklin antenna. IEEE Trans Antennas Propag 30(4):773–775

    Article  Google Scholar 

  19. Jilani SF, Alomainy A (2017) A multiband millimeter-wave 2-D array based on enhanced Franklin antenna for 5G wireless systems. IEEE Antennas Wirel Propag Lett 16:2983–2986

    Article  Google Scholar 

  20. Wang PP, Antoniades MA, Eleftheriades GV (2008) An investigation of printed Franklin antennas at X-band using artificial (metamaterial) phase-shifting lines. IEEE Trans Antennas Propag 56(10):3118–3128

    Article  Google Scholar 

  21. Kuo C-H, Lin C-C, Sun J-S (2017) Modified microstrip Franklin array antenna for automotive short-range radar application in blind spot information system. IEEE Antennas Wirel Propag Lett 16:1731–1734

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayendra Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duddu, S.K., Palepu, N.R., Addepalli, P.V., Kumar, J. (2024). Wideband High-Gain Franklin Antenna Array for 5G Millimeter-Wave Applications. In: Bhateja, V., Chowdary, P.S.R., Flores-Fuentes, W., Urooj, S., Sankar Dhar, R. (eds) Evolution in Signal Processing and Telecommunication Networks. ICMEET 2023. Lecture Notes in Electrical Engineering, vol 1155. Springer, Singapore. https://doi.org/10.1007/978-981-97-0644-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0644-0_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0643-3

  • Online ISBN: 978-981-97-0644-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics