Skip to main content

Numerical Study of Laguerre–Gaussian Beams and Analysis of OAM Based OOK Communication System

  • Conference paper
  • First Online:
Evolution in Signal Processing and Telecommunication Networks (ICMEET 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1155))

  • 49 Accesses

Abstract

In present era, where the demand for increased bandwidth is constantly rising, achieving higher spectral efficiency is an imperative necessity. A potential answer to the need in this direction is optical communication. Due to their theoretically limitless and orthogonal modes that can be effectively multiplexed, laser light beams carrying orbital angular momentum (OAM) have introduced a new paradigm in data transfers. We examined the intensity profiles and phase structures of Laguerre–Gaussian (LG) beams with various orders of topological charges in this research. The propagation characteristics of LG beams are simulated. The data communication system model simulated for the numerical study uses an OAM carrying LG beam as the carrier, ON–OFF keying for modulation, and an AWGN channel for additive white Gaussian noise. The bit error rates (BER) were calculated using the modelled system for a range of signal-to-noise ratio (SNR), and the outcomes are consistent with the predictions made by theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rubinsztein-Dunlop H, Forbes A, Berry MV, Dennis MR, Andrews DL, Mansuripur M, Denz C, Alpmann C, Banzer P, Bauer T, Karimi E, Marrucci L, Padgett M, Ritsch-Marte M, Litchinitser NM, Bigelow NP, Rosales-Guzmán C, Belmonte A, Torres JP, Neely TW, Baker M, Gordon R, Alexander BS, Romero J, White AG, Fickler R, Willner AE, Xie G, McMorran B, Weiner AM (2017) Roadmap on structured light. J Opt 19(013001):39–39. https://doi.org/10.1088/2040-8978/19/1/013001

    Article  Google Scholar 

  2. Miyamoto Y, Yoshino S, Okada A (2019) Ultrahigh-speed transmission technology for future high-capacity transport networks. NTT Tech Rev 17:5. https://doi.org/10.53829/ntr201905fa1

  3. Winzer PJ (2014) Making spatial multiplexing a reality. Nat Photonics 8:345–348. https://doi.org/10.1038/nphoton.2014.58

    Article  Google Scholar 

  4. Richardson DJ, Fini JM, Nelson LE (2013) Space-division multiplexing in optical fibres. Nat Photonics 7:354–362. https://doi.org/10.1038/nphoton.2013.94

    Article  Google Scholar 

  5. Gibson G, Courtial J, Padgett MJ, Vasnetsov M, Pas’ko V, Barnett SM, Franke-Arnold S (2004) Free-space information transfer using light beams carrying orbital angular momentum. Opt Express 12:5448–5456. https://doi.org/10.1364/OPEX.12.005448

  6. Allen L, Padgett MJ, Babiker M (1999) The orbital angular momentum of light. E. Wolf Prog Opt 39:291–372. https://doi.org/10.1016/S0079-6638(08)70391-3

    Article  MathSciNet  Google Scholar 

  7. Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP (1992) Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 45:8185–8189. https://doi.org/10.1103/PhysRevA.45.8185

    Article  Google Scholar 

  8. Wang J (2016) Advances in communications using optical vortices. Photonics Res 4:5. https://doi.org/10.1364/PRJ.4.000B14

    Article  Google Scholar 

  9. Wang J (2019) Twisted optical communications using orbital angular momentum. Sci China Phys Mech Astron 62:34201. https://doi.org/10.1007/s11433-018-9260-8

    Article  Google Scholar 

  10. Zheng F, Chen Y, Ji S, Duan G (2020) Research status and prospects of orbital angular momentum technology in wireless communication. Prog Electromagn Res 168:113–132. https://doi.org/10.2528/PIER20091104

    Article  Google Scholar 

  11. Curtis JE, Grier DG (2003) Structure of optical vortices. Phys Rev Lett 90:133901. https://doi.org/10.1103/PhysRevLett.90.133901

    Article  Google Scholar 

  12. Willner AE, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery MPJ, Tur M, Ramachandran S, Molisch AF, Ashrafi N, Ashrafi S (2015) Optical communications using orbital angular momentum beams. Adv Opt Photonics 7:66–106. https://doi.org/10.1364/AOP.7.000066

    Article  Google Scholar 

  13. Siegman AE (1986) Lasers. University Science Books, Mill Valley, sec 17.5, pp 685–695

    Google Scholar 

  14. Zhang J, Huang SJ, Zhu FQ, Shao W, Chen MS (2017) Dimensional properties of Laguerre-Gaussian vortex beams. Appl Opt 56(12):3556–3561. https://doi.org/10.1364/AO.56.003556

    Article  Google Scholar 

  15. Dennis MR, O’Holleran K, Padgett MJ (2009) Chapter 5: Singular optics: optical vortices and polarization singularities. Prog Opt 53:293–363. https://doi.org/10.1016/S0079-6638(08)00205-9

  16. Kogelnikh H, Li T (1966) Laser beams and resonators. Proc IEEE 54:10

    Google Scholar 

  17. Padgett MJ, Miatto FM, Lavery MPJ, Zeilinger A, Boyd RW (2015) Divergence of an orbital-angular-momentum-carrying beam upon propagation. New J Phys 17:023011. https://doi.org/10.1088/1367-2630/17/2/023011

    Article  Google Scholar 

  18. Trisno S (2006) Design and analysis of advanced free space optical communication systems. Ph.d thesis, University of Maryland

    Google Scholar 

  19. Tang Q, Gupta SKS, Schwiebert L (2006) BER performance analysis of an on-off keying based minimum energy coding for energy constrained wireless sensor applications. In: IEEE international conference on communication, vol 4, pp 2734–2738. https://doi.org/10.1109/ICC.2005.1494845

  20. Elganimi TY (2013) Studying the BER performance, power- and bandwidth efficiency for FSO communication systems under various modulation schemes. In: 2013 IEEE Jordan conference on applied electrical engineering and computing technologies (AEECT). IEEE. https://doi.org/10.1109/ACCET.2013.6716426

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Gawali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abhyankar, G., Gawali, S., Vetrekar, N., Gad, R.S., Naik, G.M. (2024). Numerical Study of Laguerre–Gaussian Beams and Analysis of OAM Based OOK Communication System. In: Bhateja, V., Chowdary, P.S.R., Flores-Fuentes, W., Urooj, S., Sankar Dhar, R. (eds) Evolution in Signal Processing and Telecommunication Networks. ICMEET 2023. Lecture Notes in Electrical Engineering, vol 1155. Springer, Singapore. https://doi.org/10.1007/978-981-97-0644-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0644-0_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0643-3

  • Online ISBN: 978-981-97-0644-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics