Skip to main content

Enhancing Privacy in VANET Through Attribute-Based Encryption and Blockchain Integration: Uncovering the Benefits and Challenges

  • Conference paper
  • First Online:
Cryptology and Network Security with Machine Learning (ICCNSML 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 918))

  • 81 Accesses

Abstract

With the popularity of blockchain innovation, data security has become a concern. The blockchain framework is transparent and immutable, but its unique strategy creates problems for protecting sensitive data. This article discusses attribute-based encryption (ABE) as a plan to improve data security in the context of blockchain. ABE concept in the context of blockchain provides a good way to ensure data security, improve customer privacy, and increase trust in a distribution system. This paper examines the building blocks of ABE and VANET and examines its potential application to protect information security within the blockchain framework. Additionally, the paper highlights the importance of integrating privacy-enhancing advances like VANET into blockchain systems to address evolving challenges in data protection. By taking advantage of attribute-based encryption, the blockchain framework can reduce the security risks associated with the current while maintaining the immutability and security key led by blockchain innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uddin MA, Stranieri A, Gondal I, Balasubramanian V (2021) A survey on the adoption of blockchain in IoT: challenges and solutions. Blockchain Res Appl 2(2). https://doi.org/10.1016/j.bcra.2021.100006

  2. Fan C, Ghaemi S, Khazaei H, Musilek P (2020) Performance evaluation of blockchain systems: a systematic survey. IEEE Access 8:126927–126950. https://doi.org/10.1109/ACCESS.2020.3006078

    Article  Google Scholar 

  3. Lin IC, Liao TC (2017) A survey of blockchain security issues and challenges. Int J Netw Secur 19(5):653–659. https://doi.org/10.6633/IJNS.201709.19(5).01

    Article  Google Scholar 

  4. Contreras-Castillo J, Zeadally S, Guerrero-Ibanez JA (2018) Internet of vehicles: architecture, protocols, and security. IEEE Internet Things J 5(5):3701–3709. https://doi.org/10.1109/JIOT.2017.2690902

    Article  Google Scholar 

  5. Abbas S, Talib MA, Ahmed A, Khan F, Ahmad S, Kim DH (2021) Blockchain-based authentication in internet of vehicles: a survey. Sensors 21(23). https://doi.org/10.3390/s21237927

  6. Duan X, Liu Y, Wang X (2017) SDN enabled 5G-VANET: adaptive vehicle clustering and beam formed transmission for aggregated traffic. IEEE Commun Mag 55(7):120–127. https://doi.org/10.1109/MCOM.2017.1601160

    Article  Google Scholar 

  7. Kenney JB (2011) Dedicated short-range communications (DSRC) standards in the United States. Proc IEEE 99(7):1162–1182. https://doi.org/10.1109/JPROC.2011.2132790

    Article  Google Scholar 

  8. Zhou Y, Chen S, Zhou Y, Chen M, Xiao Q (2015) Privacy-preserving multi-point traffic volume measurement through vehicle-to-infrastructure communications. IEEE Trans Veh Technol 64(12):5619–5630. https://doi.org/10.1109/TVT.2015.2487985

    Article  Google Scholar 

  9. Dwork C (2008) Differential privacy: a survey of results. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 4978. LNCS, pp 1–19. https://doi.org/10.1007/978-3-540-79228-4_1/COVER

  10. Bethencourt J, Sahai A, Waters B (2007) Ciphertext-policy attribute-based encryption. Proc IEEE Symp Secur Priv: 321–334. https://doi.org/10.1109/SP.2007.11

  11. Goyal V, Pandey O, Sahai A, Waters B (2006) Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the ACM conference on computer and communications security, pp 89–98. https://doi.org/10.1145/1180405.1180418

  12. Zhang Y, Zhang L, Wu Q, Mu Y (2022) Blockchain-enabled efficient distributed attribute-based access control framework with privacy-preserving in IoV. J King Saud Univ Comput Inf Sci 34(10):9216–9227. https://doi.org/10.1016/j.jksuci.2022.09.004

    Article  Google Scholar 

  13. Belguith S, Kaaniche N, Laurent M, Jemai A, Attia R (2018) PHOABE: securely outsourcing multi-authority attribute based encryption with policy hidden for cloud assisted IoT. Comput Netw 133:141–156. https://doi.org/10.1016/J.COMNET.2018.01.036

    Article  Google Scholar 

  14. Chuengsatiansup C, Naehrig M, Ribarski P, Schwabe P (2014) PandA: pairings and arithmetic. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 8365. LNCS, pp 229–250. https://doi.org/10.1007/978-3-319-04873-4_14/COVER

  15. Mishra P, Renuka, Verma V (2020) Identity based broadcast encryption scheme with shorter decryption keys for open networks. Wirel Pers Commun 115(2):961–969. https://doi.org/10.1007/S11277-020-07606-6

  16. Wang C, Cheng X, Li J, He Y, Xiao K (2021) A survey: applications of blockchain in the Internet of vehicles. Eurasip J Wireless Commun Netw 2021(1). https://doi.org/10.1186/s13638-021-01958-8

  17. Sharma R, Chakraborty S (2018) BlockAPP: using blockchain for authentication and privacy preservation in IoV. In: 2018 IEEE Globecom workshops, GC workshops 2018—proceedings, Feb 2019. https://doi.org/10.1109/GLOCOMW.2018.8644389

  18. Singh M, Kim S (2018) Branch based blockchain technology in intelligent vehicle. Comput Netw 145:219–231. https://doi.org/10.1016/J.COMNET.2018.08.016

    Article  Google Scholar 

  19. Kchaou A, Abassi R, Guemara S (2018) Towards a secured clustering mechanism for messages exchange in VANET. In: 2018 32nd international conference on advanced information networking and applications workshops (WAINA), vol 2018, pp 88–93. https://doi.org/10.1109/WAINA.2018.00068

  20. Kchaou A, Abassi R, Guemara S (2018) Toward a distributed trust management scheme for VANET. ACM Int Conf Proc Ser. https://doi.org/10.1145/3230833.3232824

  21. Yang YT, Der Chou L, Tseng CW, Tseng FH, Liu CC (2019) Blockchain-based traffic event validation and trust verification for VANETs. IEEE Access 7:30868–30877. https://doi.org/10.1109/ACCESS.2019.2903202

    Article  Google Scholar 

  22. Xu B et al (2017) Bright and efficient light-emitting diodes based on MA/Cs double cation perovskite nanocrystals. J Mater Chem C Mater 5(25):6123–6128. https://doi.org/10.1039/C7TC01300K

    Article  Google Scholar 

  23. Mikavica B, Kostić-Ljubisavljević A (2021) Blockchain-based solutions for security, privacy, and trust management in vehicular networks: a survey. J Supercomput 77(9):9520–9575. https://doi.org/10.1007/S11227-021-03659-X

    Article  Google Scholar 

  24. Liu X, Huang H, Xiao F, Ma Z (2020) A blockchain-based trust management with conditional privacy-preserving announcement scheme for VANETs. IEEE Internet Things J 7(5):4101–4112. https://doi.org/10.1109/JIOT.2019.2957421

    Article  Google Scholar 

  25. Lu Z, Wang Q, Qu G, Zhang H, Liu Z (2019) A blockchain-based privacy-preserving authentication scheme for VANETs. IEEE Trans Very Large Scale Integr VLSI Syst 27(12):2792–2801. https://doi.org/10.1109/TVLSI.2019.2929420

    Article  Google Scholar 

  26. Ma Z, Zhang J, Guo Y, Liu Y, Liu X, He W (2020) An efficient decentralized key management mechanism for VANET with blockchain. IEEE Trans Veh Technol 69(6):5836–5849. https://doi.org/10.1109/TVT.2020.2972923

    Article  Google Scholar 

  27. Lu Z, Liu W, Wang Q, Qu G, Liu Z (2018) A privacy-preserving trust model based on blockchain for VANETs. IEEE Access 6:45655–45664. https://doi.org/10.1109/ACCESS.2018.2864189

    Article  Google Scholar 

  28. Kang J, Xiong Z, Niyato D, Ye D, Kim DI, Zhao J (2019) Toward secure blockchain-enabled internet of vehicles: optimizing consensus management using reputation and contract theory. IEEE Trans Veh Technol 68(3):2906–2920. https://doi.org/10.1109/TVT.2019.2894944

    Article  Google Scholar 

  29. Gao Y et al (2017) Ultrafast growth of high-quality monolayer WSe2 on Au. Adv Mater 29(29):1700990. https://doi.org/10.1002/ADMA.201700990

    Article  Google Scholar 

  30. Sci-Hub|Toward secure data sharing for the IoV: a quality-driven incentive mechanism with on-chain and off-chain guarantees. IEEE Internet Things J 1. https://doi.org/10.1109/jiot.2019.2946611. Accessed 20 July 2023

  31. Chen C, Wu J, Lin H, Chen W, Zheng Z (2019) A secure and efficient blockchain-based data trading approach for internet of vehicles. IEEE Trans Veh Technol 68(9):9110–9121. https://doi.org/10.1109/TVT.2019.2927533

    Article  Google Scholar 

  32. Shahid Mumtaz, Professor—Google Scholar‬. https://scholar.google.com/citations?user=rKTo4g0AAAAJ. Accessed 20 July 2023‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

  33. Lu Y et al. Low-latency federated learning and blockchain for edge association in digital twin empowered 6G networks

    Google Scholar 

  34. Feng Q, He D, Zeadally S, Liang K (2020) BPAS: blockchain-assisted privacy-preserving authentication system for vehicular ad hoc networks. IEEE Trans Industr Inform 16(6):4146–4155. https://doi.org/10.1109/TII.2019.2948053

    Article  Google Scholar 

  35. Singh M, Kim S (2023) Blockchain based intelligent vehicle data sharing framework, July 2017. Accessed 20 July 2023 [online]. Available http://arxiv.org/abs/1708.09721

  36. Gao J et al (2020) A blockchain-SDN-enabled internet of vehicles environment for fog computing and 5G networks. IEEE Internet Things J 7(5):4278–4291. https://doi.org/10.1109/JIOT.2019.2956241

    Article  Google Scholar 

  37. Kaiwartya O et al (2016) Internet of vehicles: motivation, layered architecture, network model, challenges, and future aspects. IEEE Access 4:5356–5373. https://doi.org/10.1109/ACCESS.2016.2603219

    Article  Google Scholar 

  38. Misra MK, Chaturvedi A, Tripathi SP, Shukla V (2019) A unique key sharing protocol among three users using non-commutative group for electronic health record system. J Discr Math Sci Cryptogr 22(8):1435–1451. https://doi.org/10.1080/09720529.2019.1692450

    Article  MathSciNet  Google Scholar 

  39. Shukla V, Chaturvedi A, Misra MK (2021) On authentication schemes using polynomials over non commutative rings. Wireless Pers Commun 118(1):1–9. https://doi.org/10.1007/s11277-020-08008-4

    Article  Google Scholar 

  40. Chaturvedi A, Shukla V, Misra MK (2018) Three party key sharing protocol using polynomial rings. In: 5th IEEE Uttar Pradesh section international conference on electrical, electronics and computer engineering (UPCON), 1–5. https://doi.org/10.1109/UPCON.2018.8596905

  41. Shukla V, Misra MK, Chaturvedi A (2022) Journey of cryptocurrency in India in view of financial budget 2022–23. Cornell University, 1–6. https://doi.org/10.48550/arXiv.2203.12606

  42. Chaturvedi A, Srivastava N, Shukla V, Tripathi SP, Misra MK (2015) A secure zero knowledge authentication protocol for wireless (mobile) ad-hoc networks. Int J Comput Appl 128(2):36–39. https://doi.org/10.5120/ijca2015906437

    Article  Google Scholar 

  43. Chaturvedi A, Shukla V, Misra MK (2021) A random encoding method for secure data communication: an extension of sequential coding. J Discr Math Sci Cryptogr 24(5):1189–1204. https://doi.org/10.1080/09720529.2021.1932902

    Article  Google Scholar 

  44. Shukla V, Misra MK, Chaturvedi A (2021) A new authentication procedure for client-server applications using HMAC. J Discr Math Sci Cryptogr 24(5):1241–1256. https://doi.org/10.1080/09720529.2021.1932908

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vandani Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verma, V., Chinmay (2024). Enhancing Privacy in VANET Through Attribute-Based Encryption and Blockchain Integration: Uncovering the Benefits and Challenges. In: Chaturvedi, A., Hasan, S.U., Roy, B.K., Tsaban, B. (eds) Cryptology and Network Security with Machine Learning. ICCNSML 2023. Lecture Notes in Networks and Systems, vol 918. Springer, Singapore. https://doi.org/10.1007/978-981-97-0641-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0641-9_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0640-2

  • Online ISBN: 978-981-97-0641-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics