Skip to main content

Modelling of Engine Emissions and After-Treatment Systems

  • Chapter
  • First Online:
Modelling Spark Ignition Combustion

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

  • 48 Accesses

Abstract

Higher levels of air pollutants and greenhouse gas emissions from fossil fuel-based internal combustion engines have raised environmental concerns and it has resulted in stringent emission regulations. Recent emission norms have made it a mandatory requirement to adopt after-treatment emission control systems for controlling and reducing emission levels to meet the required emission standards. This chapter will discuss the recent research efforts in modelling engine emissions, and after-treatment systems like oxidation catalyst filters, particulate filters, and selective catalytic reduction systems. Detailed discussions on the mechanisms for soot emission modelling and NOx formation are covered in this chapter. Literature studies on one-dimensional, two-dimensional, and three-dimensional modelling of filters and catalysts coupled with CFD studies for application in three-way catalytic filters, NOx reduction catalysts, electrically heated catalysts, and particulate filters (soot accumulation and regeneration) are also discussed. Future directions for modelling advanced after-treatment systems to reduce regulated and unregulated emissions are also explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A/F:

Air fuel ratio

ATDC:

After Top Dead Center

CAD:

Crank Angle Degree

CFD:

Computational Fluid Dynamics

CGPF:

Catalysed Gasoline Particulate Filter

CO:

Carbon monoxide

DOC:

Diesel Oxidation Catalyst

DPF:

Diesel Particulate Filter

EGR:

Exhaust Gas Recirculation

GDI:

Gasoline Direct Injection

GPF:

Gasoline Particulate Filter

HC:

Hydrocarbon

IMEP:

Indicated Mean Effective Pressure

NEDC:

New European Driving Cycle

PEMS:

Portable Emission Measurement System

PFI:

Port Fuel Injection

SCR:

Selective Catalytic Reduction

SCRF:

Selective Catalytic Reduction Filter (integrated DPF–SCR)

\({\varepsilon }_{{\text{w}}}\):

effective porosity

\(\Phi\):

fuel–air equivalence ratio

ρsoot:

density of soot

dsoot:

Diameter of soot

\(\Delta {p}_{\mathrm{inlet and outlet cone}}\):

pressure drop caused by cone geometry at the inlet and outlet cone

ΔΘ:

valve overlap

\({a}_{{\text{s}}}\):

geometric surface area per reactor volume

B:

engine bore

C:

dimensionless constant

Ce:

exhaust-specific heat capacity

Cgi:

concentrations of the species i in the gas phase

Csi:

concentrations of the species i in the solid phase

cpsi:

cells per square inch

dplug:

spark plug distance from the cylinder axis

Esf:

activation energies of soot formation

Esc:

activation energies of soot oxidation

f1:

the fraction of unburned gas in the crevice which is a fuel–air mixture

f2:

the fraction of fuel–air mixture which is fuel vapour

funb:

the fraction of unburned mixture in crevice gas based on spark plug location

\({H}_{{\text{CO}}}\):

heat of reaction for CO oxidation

\({k}_{m,j}\):

diffusion mass transfer coefficient

Mc:

molecular weight

mf:

mass of fuel consumed per cylinder per cycle

N:

Engine speed

\({N}_{{R}_{i}}\):

the ratio of particle diameter and collector unit diameter

Pmax:

maximum in-cylinder pressure

Qe:

flow rate

rc:

compression ratio

\({R}_{{\text{CO}}}\):

specific rate of CO oxidation

Tcool:

coolant temperature

Ts:

surface temperature

TS0:

initial surface temperature

Tg:

bulk gas temperature

v:

bulk gas velocity

Vcrevice:

crevice volume

Vd:

displaced volume

w:

the thickness of the particulate layer

wal,:

The thickness of the ash layer

wwl:

the thickness of the washcoat layer.

xr:

residual gas fraction

References

  • Abdul Hameed N, Kurien C, Kaipakam Jaychandra R, Mittal M (2022) Effect of biomethane substitution on combustion noise and performance of a dual fuel common rail direct injection diesel engine. Environ Prog & Sustain Energy 41(6):e13915. https://doi.org/10.1002/ep.13915

  • Ahmadinejad M, Desai MR, Watling TC, York APE (2007) Simulation of automotive emission control systems. Adv Chem Eng 33:47–101

    Article  Google Scholar 

  • Ansell GP, Bennett PS, Cox JP, Frost JC, Gray PG, Jones A-M, Rajaram RR, Walker AP, Litorell M, Smedler G (1996) The development of a model capable of predicting diesel lean NOx catalyst performance under transient conditions. Appl Catal B 10(1–3):183–201

    Article  Google Scholar 

  • Arrighetti C, Cordiner S, Mulone V (2007) Heat and mass transfer evaluation in the channels of an automotive catalytic converter by detailed fluid-dynamic and chemical simulation. J Heat Transfer 129(4):536–547

    Article  Google Scholar 

  • Arunachalam H, Pozzato G, Hoffman MA, Onori S (2020) Modeling the thermal and soot oxidation dynamics inside a ceria-coated gasoline particulate filter. Control Eng Pract 94:104199

    Article  Google Scholar 

  • Awad OI, Ma X, Kamil M, Ali OM, Zhang Z, Shuai S (2020) Particulate emissions from gasoline direct injection engines: a review of how current emission regulations are being met by automobile manufacturers. Sci Total Environ 718:137302. https://doi.org/10.1016/j.scitotenv.2020.137302

  • Bensaid S, Marchisio DL, Fino D (2010) Numerical simulation of soot filtration and combustion within diesel particulate filters. Chem Eng Sci 65(1):357–363

    Article  Google Scholar 

  • Bermúdez V, Serrano JR, Piqueras P, García-Afonso O (2015) Pre-DPF water injection technique for pressure drop control in loaded wall-flow diesel particulate filters. Appl Energy 140:234–245. https://doi.org/10.1016/j.apenergy.2014.12.003

    Article  Google Scholar 

  • Bezaire BA (2011) Modeling and control of an electrically-heated catalyst. The Ohio State University

    Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. John Wiley, New York, vol 413, p 362

    Google Scholar 

  • Bissett EJ (1984) Mathematical model of the thermal regeneration of a wall-flow monolith diesel particulate filter. Chem Eng Sci 39(7–8):1233–1244

    Article  Google Scholar 

  • Boulanger J, Liu F, Neill WS, Smallwood GJ (2007) An improved soot formation model for 3D diesel engine simulations

    Google Scholar 

  • Bowman CT (1975) Kinetics of pollutant formation and destruction in combustion. Prog Energy Combust Sci 1(1):33–45

    Article  Google Scholar 

  • Braun J, Hauber T, Többen H, Zacke P, Chatterjee D, Deutschmann O, Warnatz J (2000) Influence of physical and chemical parameters on the conversion rate of a catalytic converter: a numerical simulation study. SAE Paper 10211:2000

    Google Scholar 

  • Bundele H, Kurien C, Varma S, Mittal M (2022) Experimental and Computational Studies on the Enhancement of Engine Characteristics by Hydrogen Enrichment in a Biogas Fuelled Spark Ignition Engine. Int J Hydrogen Energy 47(71):30671–30686

    Article  Google Scholar 

  • Bush P, Iretskaya S, Tadrous T (2010) SCR coated DPF: continuous soot oxidation and NOx reduction. In 16th glob powertrain congr.

    Google Scholar 

  • Chatterjee D, Deutschmann O, Warnatz J (2002) Detailed surface reaction mechanism in a three-way catalyst. Faraday Discuss 119:371–384

    Article  Google Scholar 

  • Demuynck J, Favre C, Bosteels D, Hamje H, Andersson J (2017) Real-world emissions measurements of a gasoline direct injection vehicle without and with a gasoline particulate filter

    Google Scholar 

  • Depcik C, Assanis D (2005) One-dimensional automotive catalyst modeling. Prog Energy Combust Sci 31(4):308–369

    Article  Google Scholar 

  • Devarakonda M, Parker G, Johnson JH, Strots V, Santhanam S (2008) Adequacy of reduced order models for model-based control in a urea-SCR aftertreatment system. SAE Tech Pap

    Google Scholar 

  • Di Benedetto A, Di Sarli V (2011) CFD modeling and simulation of a catalytic micro-monolith. Int J Chem React Engi-Neering 9(1)

    Google Scholar 

  • Drobot K, Cheng WK, Trinker FH, Kaiser EW, Siegl WO, Cotton DF, Underwood J (1994) Hydrocarbon oxidation in the exhaust port and runner of a spark ignition engine. Combust Flame 99(2):422–430

    Article  Google Scholar 

  • Gurupatham A, He Y (2009) Architecture design and analysis of diesel engine exhaust aftertreatment system and comparative study with close-coupled DOC-DPF System. SAE Int J Fuels Lubr 1(1):1387–1396

    Article  Google Scholar 

  • Hamrin DA, Heywood JB (1995) Modeling of engine-out hydrocarbon emissions for prototype production engines

    Google Scholar 

  • Haralampous OA, Koltsakis GC (2004) Back-diffusion modeling of NO2 in catalyzed diesel particulate filters. Ind Eng Chem Res 43(4):875–883

    Article  Google Scholar 

  • Haralampous O, Koltsakis GC (2002) Intra-layer temperature gradients during regeneration of diesel particulate filters. Chem Eng Sci 57(13):2345–2355

    Article  Google Scholar 

  • Heck RM, Farrauto RJ, Gulati ST (2016) Catalytic air pollution control: commercial technology. Wiley

    Google Scholar 

  • Heywood JB (2018) Internal combustion engine fundamentals. McGraw-Hill Education

    Google Scholar 

  • Heywood JB, Higgins JM, Watts PA, Tabaczynski RJ (1979) Development and use of a cycle simulation to predict SI engine efficiency and NOx emissions

    Google Scholar 

  • Heywood JB, Keck JC, Rife JM (1979) Hydrocarbon formation and oxidation in spark-ignition engines

    Google Scholar 

  • Hiroyasu H, Kadota T, Arai M (1983) Development and use of a spray combustion modeling to predict diesel engine efficiency and pollutant emissions: Part 1 combustion modeling. Bulletin of JSME 26(214):569–575

    Article  Google Scholar 

  • Horng R-F (2005) Effect of input energy on the cold start characteristics of an EHC with heat storing material on a motorcycle engine. Energy Convers Manage 46(7–8):1043–1057

    Article  Google Scholar 

  • Horng R-F, Chou H-M (2004) Effect of input energy on the emission of a motorcycle engine with an electrically heated catalyst in cold-start conditions. Appl Therm Eng 24(14–15):2017–2028

    Article  Google Scholar 

  • Huang H, Jiang B, Gu L, Qi Z, Lu H (2015) Promoting effect of vanadium on catalytic activity of Pt/Ce-Zr-O diesel oxidation catalysts. J Environ Sci (China) 33(2005):135–142. https://doi.org/10.1016/j.jes.2014.10.026

    Article  Google Scholar 

  • Jiao P, Li Z, Shen B, Zhang W, Kong X, Jiang R (2017) Research of DPF regeneration with NOx-PM coupled chemical reaction. Appl Therm Eng 110:737–745. https://doi.org/10.1016/J.APPLTHERMALENG.2016.08.184

    Article  Google Scholar 

  • Jiaqiang E, Zhao M, Zuo Q, Zhang B, Zhang Z, Peng Q, Han D, Zhao X, Deng Y (2020a) Effects analysis on diesel soot continuous regeneration performance of a rotary microwave-assisted regeneration diesel particulate filter. Fuel 260:116353

    Article  Google Scholar 

  • Jiaqiang E, Zheng P, Han D, Zhao X, Deng Y (2020b) Effects analysis on soot combustion performance enhancement in a rotary diesel particulate filter unit during continuous microwave heating. Fuel 276:118043

    Article  Google Scholar 

  • Johansen K, Bentzer H, Kustov A, Larsen K, Janssens TVW, Barfod RG (2014) Integration of vanadium and zeolite type SCR functionality into DPF in exhaust aftertreatment systems-Advantages and challenges. SAE Tech Pap

    Google Scholar 

  • Koegl M, Hofbeck B, Will S, Zigan L (2018) Investigation of soot formation and oxidation of ethanol and butanol fuel blends in a DISI engine at different exhaust gas recirculation rates. Appl Energy 209:426–434. https://doi.org/10.1016/j.apenergy.2017.11.034

    Article  Google Scholar 

  • Kolaczkowski ST, Chao R, Awdry S, Smith A (2007) Application of a CFD code (FLUENT) to formulate models of catalytic gas phase reactions in porous catalyst pellets. Chem Eng Res Des 85(11):1539–1552

    Article  Google Scholar 

  • Konstandopoulos AG, Johnson JH (1989) Wall-flow diesel particulate filters—their pressure drop and collection efficiency. SAE Trans:625–647

    Google Scholar 

  • Kumar A, Mazumder S (2011) Adaptation and application of the in situ adaptive tabulation (ISAT) procedure to reacting flow calculations with complex surface chemistry. Comput Chem Eng 35(7):1317–1327

    Article  Google Scholar 

  • Kurien C, Srivastava AK (2018) Active regeneration of diesel particulate filter using microwave energy for exhaust emission control. In: Singh R, Choudhury S, Gehlot A (eds) Intelligent communication, control and devices. Springer Singapore, pp 1233–1241

    Chapter  Google Scholar 

  • Kurien C, Srivastava AK (2019a) Solid reductant based selective catalytic reduction system for exhaust emission control of compression ignition engines. Nat Environ Pollut Technol 18(3):969–973

    Google Scholar 

  • Kurien C, Srivastava AK (2019) Review on Post-Treatment Emission Control Technique by Application of Diesel Oxidation Catalysis and Diesel Particulate Filtration. J Therm Eng 5(2):108–118. https://doi.org/10.18186/thermal.532252

    Article  Google Scholar 

  • Kurien C, Srivastava AK (2020) Impact of electric vehicles on indirect carbon emissions and the role of engine posttreatment emission control strategies. Integr Environ Assess Manag 16(2):234–244. https://doi.org/10.1002/ieam.4206

    Article  Google Scholar 

  • Kurien C, Srivastava AK, Anand K, Gandigudi N (2020) Modelling of microwave-based regeneration in composite regeneration emission control system. In Intelligent communication, control and devices. Springer, pp 313–320

    Google Scholar 

  • Kurien C, Srivastava AK, Gandigudi N, Anand K (2020b) Soot deposition effects and microwave regeneration modelling of diesel particulate filtration system. J Energy Inst 93(2):463–473. https://doi.org/10.1016/j.joei.2019.07.005

    Article  Google Scholar 

  • Kurien C, Srivastava AK, Lesbats S (2020c) Experimental and computational study on the microwave energy based regeneration in diesel particulate filter for exhaust emission control. J Energy Inst 93(6):2133–2147. https://doi.org/10.1016/j.joei.2020.05.008

    Article  Google Scholar 

  • Kurien C, Srivastava AK, Naudin J (2018) Modelling of regeneration and filtration mechanism in diesel particulate filter for development of composite regeneration emission control system. Archive of Mechanical Engineering 65(2):277–290. https://doi.org/10.24425/123025

    Article  Google Scholar 

  • Langeheinecke K, Schrade F, Dusemund S, Berner T, Naumov S, Horn A (2012) Virtual exhaust-gas aftertreatment test Bench-A contribution to model-based development and calibration of engine control algorithms. SAE Tech Pap

    Google Scholar 

  • Lee KW, Gieseke JA (1979) Collection of aerosol particles by packed beds. Environ Sci Technol 13(4):466–470

    Article  Google Scholar 

  • Ma L-P, Bart H-J, Ning P, Zhang A, Wu G, Zengzang Z (2009) Kinetic study of three-way catalyst of automotive exhaust gas: Modeling and application. Chem Eng J 155(1–2):241–247

    Article  Google Scholar 

  • MacDonald JS, Simon GM (1988) Development of a particulate trap system for a heavy--duty diesel engine. SAE Trans:8–36

    Google Scholar 

  • Maricq MM, Chase RE, Xu N, Laing PM (2002) The effects of the catalytic converter and fuel sulfur level on motor vehicle particulate matter emissions: Light duty diesel vehicles. Environ Sci Technol 36(2):283–289

    Article  Google Scholar 

  • Markatou P, Dai J, Johansson A, Klink W, Castagnola M, Watling TC, Tutuianu M (2011) Fe-Zeolite SCR model development, validation and application. SAE Tech Pap

    Google Scholar 

  • Markides CN, De Paola G, Mastorakos E (2007) Measurements and simulations of mixing and autoignition of an n-heptane plume in a turbulent flow of heated air. Exp Thermal Fluid Sci 31(5):393–401

    Article  Google Scholar 

  • Mianzarasvand F, Shirneshan A, Afrand M (2017) Effect of electrically heated catalytic converter on emission characteristic of a motorcycle engine in cold-start conditions: CFD simulation and kinetic study. Appl Therm Eng 127:453–464

    Article  Google Scholar 

  • Min K (1994) In-cylinder oxidation of piston-crevice hydrocarbon in SI engines. Proc Int Symp COMODIA 94:125–130

    Google Scholar 

  • Missy S, Thams J, Bollig M, Tatschl R, Wanker R, Bachler G, Ennemoser A, Grantner H (2002) Computergestützte Optimierung des Abgasnachbehandlungssystems für den neuen 1, 8-l-Valvetronic-Motor von BMW. MTZ-Motortechnische Zeitschrift 63(1):18–29

    Article  Google Scholar 

  • Mladenov N, Koop J, Tischer S, Deutschmann O (2010) Modeling of transport and chemistry in channel flows of automotive catalytic converters. Chem Eng Sci 65(2):812–826

    Article  Google Scholar 

  • Mohankumar S, Senthilkumar P (2017) Particulate matter formation and its control methodologies for diesel engine: a comprehensive review. Renew Sustain Energy Rev 80:1227–1238. https://doi.org/10.1016/j.rser.2017.05.133

    Article  Google Scholar 

  • Mohapatra P, Mittal M (2019) A simplified one-dimensional mathematical model to study the transient thermal behavior of an oxidation catalyst with both low and high levels of CO concentration at the inlet. Chem Prod Process Model 14(3)

    Google Scholar 

  • Nagle J, Strickland-Constable RF (1962) Oxidation of carbon between 1000–2000 °C. Fifth Carbon Conf 1:154–164

    Google Scholar 

  • Nair S, Mittal M (2020a) 1-D mathematical modeling of a diesel oxidation catalyst for transient hot start drive cycle. IOP Conf Ser: Mater Sci Eng 912(4):42029

    Article  Google Scholar 

  • Nair S, Mittal M (2020b) An investigation on the performance of an oxidation catalyst using two-dimensional simulation with detailed reaction mechanism. Chem Prod Process Model 15(4)

    Google Scholar 

  • Namazian M, Heywood JB (1982) Flow in the piston-cylinder-ring crevices of a spark-ignition engine: Effect on hydrocarbon emissions, efficiency and power. SAE Trans, 261–288

    Google Scholar 

  • Ogyu K, Ogasawara T, Sato H, Yamada K, Ohno K (2013) Development of high porosity SiC-DPF which is compatible with high robustness and catalyst coating capability for SCR coated DPF application. SAE Tech Pap

    Google Scholar 

  • Oh SH, Cavendish JC (1982) Transients of monolithic catalytic converters. Response to step changes in feedstream temperature as related to controlling automobile emissions. Ind Eng Chem Prod Res Dev 21(1):29–37

    Google Scholar 

  • Olowojebutu S, Steffen T (2017) A review of the literature on modelling of Integrated SCR-in-DPF systems. SAE Tech Pap

    Google Scholar 

  • Pan M, Bian X, Zhu Y, Liang Y, Lu F, Xiao G (2020) Thermodynamic analysis of a combined supercritical CO2 and ejector expansion refrigeration cycle for engine waste heat recovery. Energy Convers Manage 224:113373

    Article  Google Scholar 

  • Pandya A, Mmbaga J, Hayes RE, Hauptmann W, Votsmeier M (2009) Global kinetic model and parameter optimization for a diesel oxidation catalyst. Top Catal 52:1929–1933

    Article  Google Scholar 

  • Pantaleo AM, Simpson M, Rotolo G, Distaso E, Oyewunmi OA, Sapin P, De Palma P, Markides CN (2019) Thermoeconomic optimisation of small-scale organic Rankine cycle systems based on screw vs. piston expander maps in waste heat recovery applications. Energy Convers Manag 200:112053

    Google Scholar 

  • Pattias KN, Kyriakis NA, Samaras ZC (1985) A new approach to the oxidizing behavior of a porous ceramic diesel particulate trap

    Google Scholar 

  • Poulos SG, Heywood JB (1983) The effect of chamber geometry on spark-ignition engine combustion. SAE Trans:1106–1129

    Google Scholar 

  • Purayil STP, Hamdan MO, Al-Omari SAB, Selim MYE, Elnajjar E (2023) Review of hydrogen–gasoline SI dual fuel engines: engine performance and emission. Energy Rep 9:4547–4573

    Article  Google Scholar 

  • Rappé, K. G., Herling, D. R., Lee, J., Frye, J., & Maupin, G. (2012). Combination and integration of DPF-SCR aftertreatment technologies. Presented by Kenneth G. Rappé at Annual Merit Review and Peer Evaluation.

    Google Scholar 

  • Richter JM, Klingmann R, Spiess S, Wong K-F (2012) Application of catalyzed gasoline particulate filters to GDI vehicles. SAE Int J Eng 5(3):1361–1370

    Article  Google Scholar 

  • Robinson K, Ye S, Yap Y, Kolaczkowski ST (2013) Application of a methodology to assess the performance of a full-scale diesel oxidation catalyst during cold and hot start NEDC drive cycles. Chem Eng Res Des 91(7):1292–1306. https://doi.org/10.1016/j.cherd.2013.02.022

    Article  Google Scholar 

  • Saito C, Nakatani T, Miyairi Y, Yuuki K, Makino M, Kurachi H, Heuss W, Kuki T, Furuta Y, Kattouah P, others (2011) New particulate filter concept to reduce particle number emissions

    Google Scholar 

  • Schejbal M, Marek M, Kubíček M, Kočí P (2009) Modelling of diesel filters for particulates removal. Chem Eng J 154(1–3):219–230. https://doi.org/10.1016/J.CEJ.2009.04.056

    Article  Google Scholar 

  • Serrano JR, Arnau FJ, Piqueras P, García-Afonso Ó (2013) Packed bed of spherical particles approach for pressure drop prediction in wall-flow DPFs (diesel particulate filters) under soot loading conditions. Energy 58:644–654. https://doi.org/10.1016/J.ENERGY.2013.05.051

    Article  Google Scholar 

  • Serrano JR, Climent H, Piqueras P, Angiolini E (2016) Filtration modelling in wall-flow particulate filters of low soot penetration thickness. Energy 112:883–898. https://doi.org/10.1016/j.energy.2016.06.121

    Article  Google Scholar 

  • Shah RK (1972) Laminar flow forced convection heat transfer and flow friction in straight and curved ducts--a summary of analytical solutions. Stanford University.

    Google Scholar 

  • Singh S (2017) Comparison of fuel economy and gaseous emissions of gas-direct injection versus port-fuel injection light duty vehicles based on real-world measurements

    Google Scholar 

  • Singh S, Frey HC (2017) Procedure for measuring and comparing fuel use and gaseous emissions for gas-direct injection versus port fuel injection vehicles

    Google Scholar 

  • Skeen SA, Yablonsky G, Axelbaum RL (2010) Characteristics of non-premixed oxygen-enhanced combustion: II. Flame structure effects on soot precursor kinetics resulting in soot-free flames. Combust Flame 157(9):1745–1752

    Article  Google Scholar 

  • Song X, Johnson JH, Naber JD (2015) A review of the literature of selective catalytic reduction catalysts integrated into diesel particulate filters. Int J Engine Res 16(6):738–749

    Article  Google Scholar 

  • Surovikin VF (1976) Analytical description of the processes of nucleus-formation and growth of particles of carbon black in the thermal decomposition of aromatic hydrocarbons in the gas phase. Khimiya Tverd Topl 10(1):111–122

    Google Scholar 

  • Tan J, Solbrig C, Schmieg SJ (2011) The development of advanced 2-way SCR/DPF systems to meet future heavy-duty diesel emissions. SAE Tech Pap

    Google Scholar 

  • Tandon P, Heibel A, Whitmore J, Kekre N, Chithapragada K (2010) Measurement and prediction of filtration efficiency evolution of soot loaded diesel particulate filters. Chem Eng Sci 65(16):4751–4760

    Article  Google Scholar 

  • Tang W, Youngren D, SantaMaria M, Kumar S (2013) On-engine investigation of SCR on filters (SCRoF) for HDD passive applications. SAE Int J Eng 6(2):862–872

    Article  Google Scholar 

  • Tesner PA, Smegiriova TD, Knorre VG (1971) Kinetics of dispersed carbon formation. Combust Flame 17(2):253–260

    Article  Google Scholar 

  • Tree DR, Foster DE (1994) Optical measurements of soot particle size, number density, and temperature in a direct injection diesel engine as a function of speed and load. SAE Trans:318–330

    Google Scholar 

  • Voltz SE, Morgan CR, Liederman D, Jacob SM (1973) Kinetic study of carbon monoxide and propylene oxidation on platinum catalysts. Ind Eng Chem Prod Res Dev 12(4):294–301

    Google Scholar 

  • Watling TC, Ravenscroft MR, Avery G (2012) Development, validation and application of a model for an SCR catalyst coated diesel particulate filter. Catal Today 188(1):32–41

    Article  Google Scholar 

  • Whelan I, Samuel S, Hassaneen, A (2010) Investigation into the role of catalytic converters on tailpipe-out nano-scale particulate matter from gasoline direct injection engine

    Google Scholar 

  • Williams M, Minjares R (2016) A technical summary of Euro 6/VI vehicle emission standards.https://theicct.org/sites/default/files/publications/ICCT_Euro6-VI_briefing_jun2016.pdf

  • Wu GJ, Huang Z, Chen XL (2004) Numerical simulation of cold-start emission for the three-way catalytic converter: Mathematical model and result analysis. Chin J Chem Eng 12(3):363–371

    Google Scholar 

  • Wurzenberger JC, Peters BJ (2003) Catalytic converters in a 1D cycle simulation code considering 3D behavior. SAE Trans:745–757

    Google Scholar 

  • Xie Y, Zuo Q, Guan Q, Wei K, Zhang B (2022) Numerical analysis on a novel CGPFs for improving NOx conversion efficiency and particulate combustion efficiency to reduce exhaust pollutant emissions. Environ Sci Pollut Res, 1–17

    Google Scholar 

  • Zeldovich YA, Frank-Kamenetskii D, Sadovnikov P (1947) Oxidation of nitrogen in combustion. Publishing House of the Acad of Sciences of USSR

    Google Scholar 

  • Zhang B, Jiaqiang E, Gong J, Yuan W, Zhao X, Hu W (2017) Influence of structural and operating factors on performance degradation of the diesel particulate filter based on composite regeneration. Appl Therm Eng 121:838–852

    Article  Google Scholar 

  • Zhao F, Yang W, Yu W (2020) A progress review of practical soot modelling development in diesel engine combustion. J Traffic Transp Eng (Engl Ed) 7(3):269–281

    Google Scholar 

  • Zhao L, Ou X, Chang S (2016) Life-cycle greenhouse gas emission and energy use of bioethanol produced from corn stover in China: current perspectives and future prospectives. Energy 115:303–313

    Article  Google Scholar 

  • Zuo Q, Tang Y, Zhu G, Wei K, Guan Q, Zhang B, Shen Z (2021) Investigations on the soot combustion performance enhancement of a catalytic gasoline particulate filter in equilibrium state for reducing the BSFC of gasoline direct injection engine. Fuel 284:119032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caneon Kurien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurien, C., Mittal, M. (2024). Modelling of Engine Emissions and After-Treatment Systems. In: Lakshminarayanan, P.A., Agarwal, A.K., Ge, H., Mallikarjuna, J.M. (eds) Modelling Spark Ignition Combustion. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-97-0629-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0629-7_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0628-0

  • Online ISBN: 978-981-97-0629-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics