Skip to main content

Biodegradability and Sustainability of Biobased Nanomaterials

  • Chapter
  • First Online:
Biobased Nanomaterials

Abstract

Biobased nanomaterials have garnered increasing attention in recent years due to their potential for reducing the environmental impact of materials. To ensure that these materials are sustainable and biodegradable, it is important to consider both their biodegradability and sustainability. Biodegradability refers to the ability of a material to be broken down into simpler, nontoxic substances, while sustainability refers to the ability of a material to be produced and used in a way that does not harm the environment. Biobased nanomaterials have the potential to be more sustainable than traditional materials because they can be derived from renewable sources and have a lower carbon footprint. However, it is important to consider the entire life cycle of the material to ensure its sustainability. Researchers are exploring various strategies for promoting the biodegradability and sustainability of biobased nanomaterials, such as using biodegradable polymers or designing materials that can be broken down by specific enzymes. Overall, it is important to continue developing and promoting sustainable and biodegradable biobased nanomaterials to reduce the environmental impact of materials and promote a more sustainable future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu AS, Oliveira CS, de la Torre LG (2019) Biobased nanomaterials: sustainable and renewable green materials. In: Materials for biomed. Eng., Springer, pp 167–191

    Google Scholar 

  • Al-Ghouti A et al (2018) Nanotechnology in sustainable development: a review. J Environ Manag 210:102–116

    Google Scholar 

  • Al-Khateeb M, Alnsour M (2021) The impact of corporate social responsibility on financial performance and sustainable development: evidence from Jordan. Sustain For 13(9):1–18

    Google Scholar 

  • Anastas PT (2012) Green chemistry and the role of analytical methodology development in sustainable production. Anal Bioanal Chem 403(3):575–578

    Google Scholar 

  • Anastas PT, Warner JC (2000) Green Chem: theory and practice. Oxford University Press

    Book  Google Scholar 

  • Asemani OM, Zandi M, Azimi S et al (2021) Green synthesis of biodegradable nanoparticles: a review on recent approaches. J Environ Chem Eng 9(3):105287

    Google Scholar 

  • Azapagic S, Clift R (2004) Life cycle assessment and sustainability methodologies for assessing industrial processes. Chem Eng Res Des 82(3):307–320

    Google Scholar 

  • Azeredo HMC, Rosa MF, Mattoso LHC (2013) Nanocellulose in bio-based food packaging applications. Ind Crop Prod 44:408–420

    Google Scholar 

  • Balart R, Garcia-Garcia D, Fombuena V et al (2021) Biopolymers from natural resources. Polymers 3(15):2532

    Article  Google Scholar 

  • Bayer IS, Armentano I (2021) Advances in biobased nanomaterials for sustainable and biodegradable products. Front Chem 9:667249

    Google Scholar 

  • Borugadda VB, Goud VV (2015) Green synthesis of silver nanoparticles using agricultural waste mango peel extract and evaluation of their antimicrobial activities. J Nanomater 2015:1–8

    Google Scholar 

  • Carter CB, Norton MG (2007) Ceramic materials science and engineering, vol 716. Springer, New York, p 712

    Google Scholar 

  • Chen YY, Liu K, Zha XQ et al (2021) Encapsulation of luteolin using oxidized lotus root starch nanoparticles prepared by anti-solvent precipitation. Carbohydr Polym 273:118552

    Article  CAS  PubMed  Google Scholar 

  • Chiman K et al (2018) Protein-based nanoparticles: from preparation to encapsulation of active molecules. Int J Biol Macromol 120:1682–1694

    Google Scholar 

  • Chinga-Carrasco G, Syverud K, Gindl-Altmutter W (2019) Cellulose-based nanomaterials in the food industry: a review. Biomacromolecules 20(3):1366–1382

    Google Scholar 

  • Clark JH, Luque R (2012) Green chemistry: an evolving area of interdisciplinary chemistry. Chem Comm 48(91):11071–11073

    Google Scholar 

  • Crespy D, Landfester K (2015) Nanoparticles by nanoprecipitation: prerequisites, parameters, and protocols. Polym Chem 6(16):2791–2797

    Google Scholar 

  • Curran MA (1996) Life cycle assessment handbook: a guide for environmentally sustainable products. Lucie Press, St

    Google Scholar 

  • de la Casa-Lillo MA, López-Sanz J, Gómez-García MÁ (2021) Recent advances in biobased nanomaterials. Springer, In Nanoengineered Materials for Biomedical Applications, pp 83–107

    Google Scholar 

  • Dhawan A, Sharma S (2021) Biobased nanomaterials for sustainable and biodegradable products: challenges and future directions. In: Sustainable materials for next generation energy, pp 259–276

    Google Scholar 

  • Doshi N, Mitragotri S (2009) Designer biomaterials for nanomedicine. Adv Funct Mater 19(24):3843–3854

    Article  CAS  Google Scholar 

  • Ekvall T, Finnveden G (2000) Allocation in ISO 14041-a critical review. J Clean Prod 8(3):153–163

    Google Scholar 

  • Espinosa-Marzal RM, Saini P, Tao J et al (2021) Biodegradability of nanomaterials: moving from certainty to feasibility. Environ Sci Technol Lett 8(7):468–477

    Google Scholar 

  • Fernández-Alés R, Pascual-Fuster B (2021) Environmental management, sustainability, and competitive advantage: evidence from Spanish firms. Sustain For 13(2):1–16

    Google Scholar 

  • Finkbeiner M (2005) From life cycle assessment to sustainable production: status and perspectives. Int J LCA 10(5):292–296

    Google Scholar 

  • Fouladi M, Valizadeh A (2021) Biobased nanomaterials: a new generation of sustainable materials. Sustain Chem Pharm 21:100402

    Google Scholar 

  • Garcia A, Eggersdorfer M, Azqueta A (2018) Biodegradability and ecotoxicity of nanoparticles, quantum dots, and their bioconjugates in the environment. Trends Biotechnol 36(1):44–55

    Google Scholar 

  • García-Guzmán L, Cabrera-Barjas G, Soria-Hernández CG et al (2022) Progress in starch-based materials for food packaging applications. Polysaccharides 3(1):136–177

    Article  Google Scholar 

  • George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41(9):1471–1485

    Article  CAS  Google Scholar 

  • Ghasemi I, Mohammadi M (2020) Biodegradable polymers: types, uses, recent developments, and prospects. J Polym Res 27(4):1–19

    Google Scholar 

  • Gilca IA, Popa VI, Crestini C (2015) Obtaining lignin nanoparticles by sonication. Ultrason Sonochem 23:369–375

    Article  CAS  PubMed  Google Scholar 

  • Goswami M, Baruah M, Manik G (2019) Enzymatic degradation of biobased nanomaterials: a review. ESPR 26(26):26441–26459

    Google Scholar 

  • Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297(5582):803–807

    Article  CAS  PubMed  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  PubMed  Google Scholar 

  • Hamedi M, Karabulut E, Marais A et al (2013) Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. Angew Chem Int Ed 52(46):12038–12042

    Article  CAS  Google Scholar 

  • Hang J, Yang W (2020) Size and shape control of biodegradable nanomaterials for biomedical applications. Front Chem 8:481

    Google Scholar 

  • Hans ML, Lowman AM (2002) Biodegradable nanoparticles for drug delivery and targeting. Curr Opinion Solid State Mater Sci 6(4):319–327

    Article  CAS  Google Scholar 

  • Hu M, Cao J, Zhang S (2021) The effects of corporate environmental responsibility and corporate social responsibility on firm value: evidence from China. Sustain For 13(6):1–18

    Google Scholar 

  • Huang X, Brazel CS, Onuma K (2018) Biodegradable polymers: challenges and opportunities. React Funct Polym 131:150–164

    Google Scholar 

  • Huang Z, Ding Y, Li X et al (2021) Recent advances in the design and preparation of biodegradable polymeric nanomaterials for drug delivery. Expert Opin Drug Deliv 18(4):387–404

    Google Scholar 

  • Iwuozor KO, Ighalo JO, Emenike EC et al (2021) Current research in green and sustainable chemistry. CRGSC 4:100179

    CAS  Google Scholar 

  • Jadhav SS, Gaikwad SD, Dhoble SJ (2017) Green chemistry and engineering: an innovative approach for sustainable development. J Clean Prod 140(1):155–168

    Google Scholar 

  • Jahanban-Esfahlan A, Jahanban-Esfahlan R, Tabibiazar M et al (2020) Recent advances in the use of walnut (Juglans regia L.) shell as a valuable plant-based bio-sorbent for the removal of hazardous materials. RSC Adv 10(12):7026–7047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang C, He H, Jiang H et al (2013) Nano-lignin filled natural rubber composites: preparation and characterization. Express Polym Lett 7(5):480–493

    Article  CAS  Google Scholar 

  • Jiang Y, Li B, Li H et al (2019) Enzymatic degradation of biobased nanomaterials: a review. Green Chem 21(8):1830–1845

    Google Scholar 

  • Joshi M, Patil S (2021) Green chemistry approach for sustainable development: a review. Environ Nanotechnol Monit 16:100438

    Google Scholar 

  • Kargarzadeh H et al (2013) Cellulose nanocrystals: a promising bio-based nanomaterial for application in nanocomposites. Polym Rev 53(4):652–685

    Google Scholar 

  • Kargarzadeh H, Sheltami RM, Ahmad I et al (2015) Cellulose nanocrystal reinforced liquid natural rubber toughened unsaturated polyester: effects of filler content and surface treatment on its morphological, thermal, mechanical, and viscoelastic properties. Polymer 71:51–59

    Article  CAS  Google Scholar 

  • Kargarzadeh H, Ahmad I, Abdullah I et al (2018) Advances in cellulose nanomaterials. Cellulose 25(4):2151–2189

    Article  CAS  Google Scholar 

  • Kaya M, Mujtaba M, Ehrlich H et al (2017) On the chemistry of γ-chitin. Carbohydr Polym 176:177–186

    Article  CAS  PubMed  Google Scholar 

  • Keesstra S, Pereira P, Guimarães Pereira  et al (2018) Soil conservation and sustainable land management. Sustain For 10(9):1–9

    Google Scholar 

  • Khalil HPSA, Davoudpour Y, Islam MN et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665

    Article  PubMed  Google Scholar 

  • Khoo HH, Tan RB, Chng KW et al (2010) Environmental impacts of conventional plastic and bio-based carrier bags: part 1: life cycle production. Int J LCA 15:284–293

    Article  CAS  Google Scholar 

  • Kumar S, Gupta R, Kumar R et al (2021a) Biobased nanomaterials: promising sustainable materials for future applications. Renew Sust Energ Rev 150:111417

    Google Scholar 

  • Kumar P, Kumar S, Nehra M et al (2021b) Biobased nanomaterials: sustainable and biodegradable materials for the future. J Clean Prod 287:125362

    Google Scholar 

  • Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–492

    Article  CAS  PubMed  Google Scholar 

  • Li H, Hu Z, Chen Y et al (2016) Recent advances in biobased nanomaterials for water purification: a review. Bioresour Bioprocess 3(1):12

    Article  Google Scholar 

  • Li Y, Liu J, Jiang L (2018) The future of sustainability: a focus on green nanometer. Adv Mater 30(28):1707363

    Google Scholar 

  • Li Y, Zhang X, Yu J et al (2020) Biodegradable nanomaterials for drug delivery: a review. J Biomed Nanotechnol 16(6):731–752

    Google Scholar 

  • Li J, Liu Y, Zeng Y et al (2021) Biodegradable polymers for food packaging: a review. J Clean Prod 313:127980

    Google Scholar 

  • Liu D, Chen J, Chen L (2021) Biobased nanomaterials for sustainable and biodegradable products: a review of recent advances and future prospects. Bioact Mater 6(12):4676–4696

    Google Scholar 

  • Lligadas G, Ronda JC, Galià M (2018) Biodegradable polymers: renewables-based materials with promising future in the plastics industry. Polym 10(3):321

    Google Scholar 

  • Madhumitha G, Ramesh Babu R (2015) Biodegradable polymers—a review on recent trends and emerging perspectives. J Clean Energy Technol 3(3):163–166

    Google Scholar 

  • Maiti S, Das P, Chatterjee A et al (2021) Sustainable materials and manufacturing. In: Materials for sustain. Dev, pp 39–61

    Google Scholar 

  • Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346

    Article  CAS  PubMed  Google Scholar 

  • Mohamad NR, Yusoff R, Harun WSW (2019) A review on green nanocomposites: processing, characterization, properties, and applications. J Clean Prod 215:606–617

    Google Scholar 

  • Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers, and biocomposites: an overview. Macromol Mater Eng 276(1):1–24

    Article  Google Scholar 

  • Mousavi SM, Abdul Rashid S (2021) Biodegradable polymers: a review on synthetic materials for sustainable development. Polymers 13(7):1003

    Google Scholar 

  • Nel A, Xia T, Madler LN et al (2006) Toxic potential of materials at the nanoleve. Science 311(5761):622–627

    Article  CAS  PubMed  Google Scholar 

  • Olsson JA, Azapagic R (2010) Life cycle assessment of wood-based products: a review. For Prod J 60(4):257–267

    Google Scholar 

  • Ong YM, Teng SL, Chan KY (2020) Achieving sustainable development goals through tourism: a case study of Kuala Lumpur. Sustain For 12(21):1–17

    Google Scholar 

  • Österberg M, Henn KA, Farooq M et al (2023) Biobased nanomaterials─ the role of interfacial interactions for advanced materials. Chem Rev 123(5):2200–2241

    Article  PubMed  PubMed Central  Google Scholar 

  • Plummer JJ et al (2013) Nanotechnology for sustainable manufacturing. Green Chem 15(5):1231–1247

    Google Scholar 

  • Ren J, Zhao Y, Zhou C (2021) Design and development of biodegradable nanomaterials for biomedical applications. Nano-Micro Lett 13(1):1–23

    Google Scholar 

  • Ritter SK (2008) Green chemistry: sustainable chemistry for the 21st century. EHP 116(10):A428–A431

    Google Scholar 

  • Rocha GT, Acree WE Jr (2011) Life cycle assessment: an essential tool for a sustainable chemical industry. Ind Eng Chem Res 50(5):2518–2526

    Google Scholar 

  • Roy P, Das A (2019) Role of recycling in environmental conservation: an overview. I JEST 16(4):2077–2086

    Google Scholar 

  • Sahoo SK, Parveen S, Panda JJ (2007) The present and future of nanotechnology in human health care. Nanomed.: Nanotechnol. Biol Med 3(1):20–31

    CAS  Google Scholar 

  • Sarbu T, Styranec TJ, Beckman EJ et al (2000) Design and synthesis of low-cost, sustainable CO2 files. Ind Eng Chem 39(12):4678–4683

    Article  CAS  Google Scholar 

  • Sheth P, Basu B, Patel M (2021) Biodegradable polymers: a review of applications in medicine. Int J Biol Macromol 169:95–106

    Google Scholar 

  • Shibata M, Ozawa K (2020) Development of biodegradable polymers and their applications. Polym J 52(9):859–872

    Google Scholar 

  • Shinsuke I et al (2013) (2012) preparation of chitin nanofibers and their applications. Nanoscale 5(20):9970–9988

    Google Scholar 

  • Singh RP, Singh P (2019) Sustainable development and the biodegradable plastics: a review. Environ Chem Lett 17(4):1481–1494

    Google Scholar 

  • Singh RK, Murty HR, Gupta SK et al (2012) An overview of sustainability assessment methodologies. Ecol Indic 15(1):281–299

    Article  Google Scholar 

  • Singh NB, Jain P, De A et al (2021) Green synthesis and applications of nanomaterials. Curr Pharm Biotechnol 22(13):1705–1747

    Article  CAS  PubMed  Google Scholar 

  • Siracusa V, Rocculi P, Romani S et al (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643

    Article  CAS  Google Scholar 

  • Sleight BH, Tennyson RL (2016) Poly(lactic acid): a green chemistry approach to polymer synthesis. JCE 93(8):1411–1417

    Google Scholar 

  • Talja RA, Peltonen J (2007) Composting of biodegradable packaging materials. J Polym Environ 15(4):237–244

    Google Scholar 

  • Thakur VK, Thakur MK, Raghavan P (2014a) Handbook of polymers for pharmaceutical technologies, bioactive and compatible synthetic/hybrid polymers, vol 4. John Wiley & Sons

    Google Scholar 

  • Thakur VK, Thakur MK, Raghavan P et al (2014b) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Raghavan P (2014c) Development and characterization of novel eco-friendly bio-nanocomposite films based on starch and chitosan with nano-cellulose reinforcement. Ind Crop Prod 55:119–130

    Google Scholar 

  • Thompson R, Thompson M (2013) Sustainable materials, processes and production. Thames & Hudson, London

    Google Scholar 

  • United Nations. (2015) Transforming our world: the 2030 agenda for sustainable development

    Google Scholar 

  • Velu S, Ramesh T, Rajendran S (2021) Biodegradable polymers: an eco-friendly alternative to conventional polymers. Mater Today: Proc 45:100–104

    Google Scholar 

  • Wang Y, Du X, Shin W (2021) Environmental fate and safety assessment of biodegradable polymers: a review. J Hazard Mater 417:126054

    Google Scholar 

  • Weidema CA (2008) Sustainability assessment of products: a critical overview of methods. Int J LCA 13(2):89–96

    Article  Google Scholar 

  • Wu J, Wang X, Wang Y et al (2018) Design and preparation of biodegradable polymeric nanomaterials for biomedical applications. Nano 8(12):983

    Google Scholar 

  • Yang X, Ren J, Liu H (2021) Sustainable development of biodegradable nanomaterials: from life cycle assessment to green manufacturing. J Clean Prod 291:125910

    Google Scholar 

  • Youssef H et al (2020) (2010) cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 120(11):5288–5355

    Google Scholar 

  • Yuan Z, Chen J (2019) Biocatalytic synthesis of organic chemicals with water as the solvent. Green Chem 21(3):364–380

    Google Scholar 

  • Yue Y, Wang T, Su Y et al (2021) Sustainable nano biomaterials for the circular economy: opportunities and challenges. ACS Sustain Chem Eng 9(14):4955–4969

    Google Scholar 

  • Zhang L, Hsiao BS (2012) Microfluidics for nanoparticles: delivering controlled synthesis and assembly. Adv Mater 24(28):3838–3849

    Google Scholar 

  • Zhang H, Xie Y, Zhang Y (2020) Recent advances in biodegradable nanomaterials for cancer therapy. Curr Med Chem 27(2):319–337

    Google Scholar 

  • Zhu H, Luo W, Ciesielski PN et al (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116(16):9305–9374

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arora, D., Kumar, M., Bhatt, S., Gautam, R.K., Taneja, Y. (2024). Biodegradability and Sustainability of Biobased Nanomaterials. In: Ahmed, S. (eds) Biobased Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-97-0542-9_16

Download citation

Publish with us

Policies and ethics