Skip to main content

Local Brightness Normalization for Image Classification and Object Detection Robust to Illumination Changes

  • Conference paper
  • First Online:
Image and Video Technology (PSIVT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14403))

Included in the following conference series:

  • 105 Accesses

Abstract

Deep neural networks are typically trained on images taken under controlled illumination. Those networks work well on such images, but not on images that contain severe illumination changes which often occur in practice. To improve the robustness of networks to illumination changes, we propose to use local brightness normalization (LBN) as pre-processing of the input images and to train the network on those normalized images. The LBN can convert images to have similar appearances from various types of illumination changes. Then, we assume that input images of training and testing are more aligned by the LBN. Experimental comparisons of the image classification task and the object detection task show that the proposed LBN-based approach can improve the accuracy with images of uniform and non-uniform illumination changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Such failure of the combination of histogram-based normalization and ImageNet normalization is experimentally validated in Table 1 and Table 4.

References

  1. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. In: Proceedings of the International Conference on Learning Representations (2019)

    Google Scholar 

  2. Michaelis, C., et al.: Benchmarking robustness in object detection: autonomous driving when winter is coming. arXiv preprint arXiv:1907.07484 (2019)

  3. Croce, F., et al.: RobustBench: a standardized adversarial robustness benchmark. arXiv preprint arXiv:2010.09670 (2020)

  4. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: Proceedings of the International Conference on Learning Representations (2015)

    Google Scholar 

  5. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: Proceedings of International Conference on Learning Representations (2017)

    Google Scholar 

  6. Steinhardt, J., Koh, P.W.W., Liang, P.S.: Certified defenses for data poisoning attacks. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  7. Endo, K., Tanaka, M., Okutomi, M.: CNN-based classification of degraded images with awareness of degradation levels. IEEE Trans. Circuits Syst. Video Technol. 31(10), 4046–4057 (2020)

    Article  Google Scholar 

  8. Endo, K., Tanaka, M., Okutomi, M.: Cnn-based classification of degraded images without sacrificing clean images. IEEE Access 9, 116094–116104 (2021)

    Article  Google Scholar 

  9. Dodge, S.F., Karam, L.J.: Quality robust mixtures of deep neural networks. IEEE Trans. Image Process. 27(11), 5553–5562 (2018)

    Article  MathSciNet  Google Scholar 

  10. Zheng, S., Song, Y., Leung, T., Goodfellow, I.: Improving the robustness of deep neural networks via stability training. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  11. Borkar, T.S., Karam, L.J.: Deepcorrect: correcting DNN models against image distortions. IEEE Trans. Image Process. 28(12), 6022–6034 (2019)

    Article  MathSciNet  Google Scholar 

  12. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2009)

    Google Scholar 

  13. Gonzalez, R.C.: Digital Image Processing. Pearson Education India, Bangalore (2009)

    Google Scholar 

  14. Pizer, S.M., et al.: Adaptive histogram equalization and its variations. Comput. Vision Graph. Image Process. 39(3), 355–368 (1987)

    Article  Google Scholar 

  15. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? In: 2009 IEEE 12th International Conference on Computer Vision. IEEE (2009)

    Google Scholar 

  16. Carandini, M., Heeger, D.J.: Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51–62 (2012)

    Article  Google Scholar 

  17. Fournier, A., Fussell, D., Carpenter, L.: Computer rendering of stochastic models. Commun. ACM 25(6), 371–384 (1982)

    Article  Google Scholar 

  18. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  20. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

  23. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  24. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanshuo Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Y., Tanaka, M., Kawakami, R., Okutomi, M. (2024). Local Brightness Normalization for Image Classification and Object Detection Robust to Illumination Changes. In: Yan, W.Q., Nguyen, M., Nand, P., Li, X. (eds) Image and Video Technology. PSIVT 2023. Lecture Notes in Computer Science, vol 14403. Springer, Singapore. https://doi.org/10.1007/978-981-97-0376-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0376-0_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0375-3

  • Online ISBN: 978-981-97-0376-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics