Skip to main content

Assessment and Validation of No-slip Boundary Conditions for the Discrete Unified Gas Kinetic Scheme

  • Chapter
  • First Online:
Computational Fluid Dynamics

Part of the book series: Engineering Applications of Computational Methods ((EACM,volume 20))

  • 91 Accesses

Abstract

This chapter introduces different no-slip boundary conditions, including the bounce-back (BB), non-equilibrium bounce-back (NEBB), and moment-based schemes, for the discrete unified gas kinetic scheme (DUGKS). The numerical errors of these schemes of no-slip boundary conditions are theoretically analyzed from the view of moment. And numerical performance is assessed and validated by several benchmark problems, such as the Couette flow, the Poiseuille flow, the lid-driven cavity flow, and the vortex dipole-wall collision. The results show that the present moment-based scheme is more accurate than the present BB, NEBB, and reference schemes in simulation of Poiseuille flow and dipole-wall collision, compared to the analytical solution and reference data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo Z, Xu K, Wang R (2013) Discrete unified gas kinetic scheme for all Knudsen number flows: low-speed isothermal case. Phys Rev E 88(3):033305

    Article  ADS  Google Scholar 

  2. Wang P, Zhu L, Guo Z et al (2015) A comparative study of LBE and DUGKS methods for nearly incompressible flows. Commun Comput Phys 17(03):657–681

    Article  MathSciNet  Google Scholar 

  3. Wu C, Shi B, Chai Z et al (2016) Discrete Unified gas kinetic scheme with a force term for incompressible fluid flows. Comput Math Appl 71(12):2608

    Article  MathSciNet  Google Scholar 

  4. Guo Z, Wang R, Xu K (2015) Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case. Phys Rev E 91(3):033313

    Google Scholar 

  5. Wang P, Wang LP, Guo Z (2016) Comparison of the lattice Boltzmann equation and discrete unified gas-kinetic scheme methods for direct numerical simulation of decaying turbulent flows. Phys Rev E 94(4):043304

    Article  ADS  MathSciNet  Google Scholar 

  6. Bo Y, Wang P, Guo Z, Wang LP (2017) DUGKS simulations of three-dimensional Taylor-Green vortex flow and turbulent channel flow. Comput Fluids 155:9–21

    Article  MathSciNet  Google Scholar 

  7. Wang LP, Huq P, Guo Z (2015) Simulations of turbulence and dispersion in idealized urban canopies using a new kinetic scheme. In: 68th Annual meeting of the APS division of fluid dynamics, 22–24, November 2015, Boston, Massachusetts

    Google Scholar 

  8. Wen X, Wang LP, Guo ZL, Zhakebayev DB (2021) Laminar to turbulent flow transition inside the boundary layer adjacent to isothermal wall of natural convection flow in a cubical cavity. Int J Heat Mass Transf 167:120822

    Article  Google Scholar 

  9. Zhu L, Guo Z (2017) Numerical study of nonequilibrium gas flow in a microchannel with a ratchet surface. Phys Rev E 95(2):023113

    Article  ADS  Google Scholar 

  10. Zhu L, Yang X, Guo Z (2017) Thermally induced rarefied gas flow in a three-dimensional enclosure with square cross-section. Phys Rev Fluids 2(12):123402

    Article  ADS  Google Scholar 

  11. Wang P, Ho MT, Wu L, Guo Z, Zhang Y (2018) A comparative study of discrete velocity methods for low-speed rarefied gas flows. Comput Fluids 161:33–46

    Article  MathSciNet  Google Scholar 

  12. Zhu L, Guo Z (2019) Application of discrete unified gas kinetic scheme to thermally induced nonequilibrium flows. Comput Fluids 193:103613

    Article  MathSciNet  Google Scholar 

  13. Wang Y, Liu S, Zhuo CS, Zhong CW (2022) Investigation of nonlinear squeeze-film damping involving rarefied gas effect in micro-electro-mechanical systems. Comput Math Appl 114(15):188–209

    Article  MathSciNet  Google Scholar 

  14. Wang LP, Guo Z, Wang J (2018) Improving the discrete unified gas kinetic scheme for efficient simulation of three-dimensional compressible turbulence. In: 71st annual meeting of the APS division of fluid dynamics, 18–20, November 2018, Atlanta, Georgia

    Google Scholar 

  15. Chen T, Wen X, Wang LP, Guo Z, Wang J, Chen S (2020) Simulation of three-dimensional compressible decaying isotropic turbulence using a redesigned discrete unified gas kinetic scheme. Phys Fluids 32(12):125104

    Article  ADS  Google Scholar 

  16. Wen X, Wang LP, Guo ZL (2021) Designing a consistent implementation of the discrete unified gas-kinetic scheme for the simulation of three-dimensional compressible natural convection. Phys Fluids 33:046101

    Article  ADS  Google Scholar 

  17. Chen T, Wen X, Wang LP, Guo ZL, Wang JC, Chen SY, Zhakebayev DB (2022) Simulation of three-dimensional forced compressible isotropic turbulence by a redesigned discrete unified gas kinetic scheme. Phys Fluids 34:025106

    Article  ADS  Google Scholar 

  18. Zhang CH, Yang K, Guo Z (2018) A discrete unified gas-kinetic scheme for immiscible two-phase flows. Int J Heat Mass Transf 126:1326–1336

    Article  Google Scholar 

  19. Yang Z, Zhong C, Zhuo C (2019) Phase-field method based on discrete unifified gas-kinetic scheme for large-density-ratio two-phase flows. Phys Rev E 99:043302

    Article  ADS  MathSciNet  Google Scholar 

  20. Zhang C, Liang H, Guo Z, Wang L-P (2022) Discrete unified gas-kinetic scheme for the conservative Allen-Cahn equation. Phys Rev E 105:045317

    Article  ADS  MathSciNet  Google Scholar 

  21. Tao S, Zhang H, Guo Z, Wang LP (2018) A combined immersed boundary and discrete unified gas kinetic scheme for particle-fluid flows. J Comput Phys 375:498–518

    Article  ADS  MathSciNet  Google Scholar 

  22. Tao S, Chen B, Yang X, Huang S (2018) Second-order accurate immersed boundary-discrete unified gas kinetic scheme for fluid-particle flows. Comput Fluids 165:54–63

    Article  MathSciNet  Google Scholar 

  23. Tao S, He Q, Wang L, Chen B, Chen JC, YS L (2021) Discrete unified gas kinetic scheme simulation of conjugate heat transfer problems in complex geometries by a ghost-cell interface method. Appl Mathem Comput 404:126228

    Google Scholar 

  24. He Q, Tao S, XP Y, Lu WJ, He ZR (2021) Discrete unified gas kinetic scheme simulation of microflows with complex geometries in Cartesian grid. Phys Fluids 33:042005

    Google Scholar 

  25. Zhang Y, Zhu L, Wang R, Guo Z (2018) Discrete unified gas kinetic scheme for all Knudsen number flows. III. Binary gas mixtures of Maxwell molecules. Phys Rev E 97(5):053306

    Google Scholar 

  26. Zhang Y, Zhu L, Wang P, Guo Z (2019) Discrete unified gas kinetic scheme for flows of binary gas mixture based on the McCormack model. Phys Fluids 31(1):017101

    Article  ADS  Google Scholar 

  27. Tao S, Wang L, Ge Y, He Q (2021) Application of half-way approach to discrete unified gas kinetic scheme for simulating pore-scale porous media flows. Comput Fluids 214:104776

    Article  MathSciNet  Google Scholar 

  28. Liu H, Quan L, Chen Q, Zhou S, Cao Y (2020) Discrete unified gas kinetic scheme for electrostatic plasma and its comparison with the particle-in-cell method. Phys Rev E 101(4):43307

    Article  ADS  Google Scholar 

  29. Liu H, Shi F, Wan J, He X, Cao Y (2020) Discrete unified gas kinetic scheme for a reformulated BGK-Vlasov-Poisson system in all electrostatic plasma regimes. Comput Phys Commun 255:107400

    Article  MathSciNet  Google Scholar 

  30. Guo Z, Xu K (2016) Discrete unified gas kinetic scheme for multiscale heat transfer based on the phonon Boltzmann transport equation. Int J Heat Mass Transf 102:944–958

    Article  Google Scholar 

  31. Zhang C, Guo Z (2019) Discrete unified gas kinetic scheme for multiscale heat transfer with arbitrary temperature difference. Int J Heat Mass Transf 134:1127–1136

    Article  Google Scholar 

  32. Luo XP, Yi HL (2017) A discrete unified gas kinetic scheme for phonon Boltzmann transport equation accounting for phonon dispersion and polarization. Int J Heat Mass Transf 114:970–980

    Article  Google Scholar 

  33. Luo XP, Wang CH, Zhang Y, Yi HL, Tan HP (2018) Multiscale solutions of radiative heat transfer by the discrete unified gas kinetic scheme. Phys Rev E 97(6):063302

    Article  ADS  Google Scholar 

  34. Song X, Zhang C, Zhou X, Guo Z (2020) Discrete unified gas kinetic scheme for multiscale anisotropic radiative heat transfer. Adv Aerodyn 2(1):1–15

    Article  Google Scholar 

  35. Zhang L, Yang S, Zeng Z, Chew JW (2018) Consistent secondorder boundary implementations for convection-diffusion lattice Boltzmann method. Phys Rev E 97:023302

    Article  ADS  MathSciNet  Google Scholar 

  36. Zhang L, Yang S, Zeng Z, Chew JW (2018) Consistent boundary conditions of the multiple-relaxation-time lattice Boltzmann method for convection–diffusion equations. Comput Fluids 170:24

    Article  MathSciNet  Google Scholar 

  37. Zhang L, Yang S, Zeng Z, Chew JW (2018) Lattice model effects on the accuracy of the boundary condition implementations for the convection–diffusion lattice Boltzmann method. Comput Fluids 176:153

    Article  MathSciNet  Google Scholar 

  38. Zou Q, He X (1997) On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids 9:1591

    Article  ADS  MathSciNet  Google Scholar 

  39. Yang L, Yu Y, Liming Y, Guoxiang H (2020) Analysis and assessment of the no-slip and slip boundary conditions for the discrete unified gas kinetic scheme. Phys Rev E 101:023312

    Google Scholar 

  40. Mohammed S, Graham D, Reis T (2018) Assessing moment-based boundary conditions for the lattice Boltzmann equation: a study of dipole-wall collisions. Comput Fluids 176:79–96

    Article  MathSciNet  Google Scholar 

  41. Allen R, Reis T (2016) Moment-based boundary conditions for lattice Boltzmann simulations of natural convection in cavities. Progress in Comput Fluid Dynam 16(4):216–231

    Article  MathSciNet  Google Scholar 

  42. Reis T (2020) On the lattice boltzmann deviatoric stress: analysis, boundary conditions, and optimal relaxation times. Siam J Sci Comput 42(2):397–424

    Article  MathSciNet  Google Scholar 

  43. Mohammed S, Reis T (2017) Using the lid-driven cavity flow to validate moment-based boundary conditions for the lattice Boltzmann equation. Arch Mech Eng 64(1):57–74

    Article  Google Scholar 

  44. Krastins I, Kao A, Pericleous K, Reis T (2020) Moment-based boundary conditions for straight on-grid boundaries in three-dimensional lattice Boltzmann simulations. Int J Numer Meth Fluids 92:1948–1974

    Article  MathSciNet  Google Scholar 

  45. Reis T (2020) Burnett order stress and spatially-dependent boundary conditions for the Lattice Boltzmann method. Commun Comput Phys 27(1):167–197

    Article  MathSciNet  Google Scholar 

  46. Wenqiang G, Hou G (2023) Novel schemes of no-slip boundary conditions for the discrete unified gas kinetic scheme based on the moment constraints. Entropy 25:780

    Google Scholar 

  47. Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364

    Article  ADS  MathSciNet  Google Scholar 

  48. Xu K, Huang JC (2010) A unified gas-kinetic scheme for continuum and rarefied flows. J Comput Phys 229:7747–7764

    Article  ADS  MathSciNet  Google Scholar 

  49. Guo Z, Shi B, Zhao T, Zheng C (2007) Discrete effects on boundary conditions for the lattice Boltzmann equation in simulating microscale gas flows. Phys Rev E 76:056704

    Article  ADS  Google Scholar 

  50. He X, Zou Q, Luo L-S, Dembo M (1997) Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. J Stat Phys 87:115

    Article  ADS  MathSciNet  Google Scholar 

  51. Wang K, Chai Z, Hou G, Chen W, Xu S (2018) Slip boundary condition for lattice Boltzmann modeling of liquid flows. Comput Fluids 161:60

    Article  MathSciNet  Google Scholar 

  52. Yang L, Yu Y, Hou G, Wang K, Xiong Y (2018) Boundary conditions with adjustable slip length for the lattice Boltzmann simulation of liquid flow. Comput Fluids 174:200

    Article  MathSciNet  Google Scholar 

  53. Ghia U, Ghia KN, Shin C (1982) High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys 48(3):387–411

    Article  ADS  Google Scholar 

  54. Orlandi P (1990) Vortex dipole rebound from a wall. Phys Fluids A (1989–1993)2:1429–36

    Google Scholar 

  55. Jamart B, Nihoul J (1989) Mesoscale/synoptic coherent structures in geophysical turbulence. Elsevier, New York

    Google Scholar 

  56. Clercx H, Bruneau C-H (2006) The normal and oblique collision of a dipole with a no-slip boundary. Comput Fluids 35:245–279

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hou, G., Chen, C., Qin, S., Gao, Y., Wang, K. (2024). Assessment and Validation of No-slip Boundary Conditions for the Discrete Unified Gas Kinetic Scheme. In: Computational Fluid Dynamics. Engineering Applications of Computational Methods, vol 20. Springer, Singapore. https://doi.org/10.1007/978-981-97-0349-4_14

Download citation

Publish with us

Policies and ethics