Skip to main content

Coupled Simplified Lattice Boltzmann Method Study on Thermal Flows

  • Chapter
  • First Online:
Computational Fluid Dynamics

Part of the book series: Engineering Applications of Computational Methods ((EACM,volume 20))

  • 85 Accesses

Abstract

In this chapter, the effect of heated length and temperature gradient orientation on the mixed convection flow in a lid-driven cavity is numerically studied, using the recently proposed coupled simplified lattice Boltzmann method (CSLBM) (Gao et al. 2021). CSLBM has been validated by comparison with the literature, and the convergence analysis as well as the grid independence test are also carried out to confirm the accuracy of the conveyed results. Four representative dimensionless heated lengths between 0 and 1, and typical temperature gradient orientations, namely vertical upward are selected to investigate the joint effects of the Richardson number, temperature gradient orientation, and length of the heat source on heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Salem K, Öztop HF, Pop I, Varol Y (2012) Effects of moving lid direction on mhd mixed convection in a linearly heated cavity. Int J Heat Mass Transf 55(4):1103–1112. https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.062

    Article  Google Scholar 

  2. Ray S, Chatterjee D (2014) Mhd mixed convection in a lid-driven cavity including heat conducting circular solid object and corner heaters with joule heating. Int Commun Heat Mass Transf 57:200–207. https://doi.org/10.1016/j.icheatmasstransfer.2014.07.029

    Article  Google Scholar 

  3. Öztop HF, Estellé P, Yan W-M, Al-Salem K, Orfi J, Mahian O (2015) A brief review of natural convection in enclosures under localized heating with and without nanofluids. Int Commun Heat Mass Transf 60:37–44. https://doi.org/10.1016/j.icheatmasstransfer.2014.11.001

    Article  Google Scholar 

  4. Chattopadhyay A, Pandit SK, Sen Sarma S, Pop I (2016) Mixed convection in a double lid-driven sinusoidally heated porous cavity. Int J Heat and Mass Transf 93:361–378. https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.010

  5. Hussien AA, Al-Kouz W, Hassan ME, Janvekar AA, Chamkha AJ (2021) A review of flow and heat transfer in cavities and their applications. The Europ Phys J Plus 136(4):353. https://doi.org/10.1140/epjp/s13360-021-01320-3

    Article  Google Scholar 

  6. Shahid H, Yaqoob I, Khan WA, Aslam M (2021) Multi relaxation time lattice Boltzmann analysis of lid-driven rectangular cavity subject to various obstacle configurations. Int Commun Heat and Mass Transf 129. https://doi.org/10.1016/j.icheatmasstransfer.2021.105658

  7. Ali MM, Akhter R, Alim MA (2022) Magneto-mixed convection in a lid driven partially heated cavity equipped with nanofluid and rotating flat plate. Alex Eng J 61(1):257–278. https://doi.org/10.1016/j.aej.2021.05.003

    Article  Google Scholar 

  8. Iwatsu R, Hyun JM, Kuwahara K (1993) Mixed convection in a driven cavity with a stable vertical temperature gradient. Int J Heat Mass Transf 36(6):1601–1608. https://doi.org/10.1016/s0017-9310(05)80069-9

    Article  Google Scholar 

  9. Samanta R, Chattopadhyay H, Guha C (2020) Transport phenomena in a differentially heated lid-driven cavity: A study using multi-relaxation-time thermal lattice Boltzmann modeling. Phys Fluids 32(9). https://doi.org/10.1063/5.0021105

  10. Cheng TS, Liu WH (2010) Effect of temperature gradient orientation on the characteristics of mixed convection flow in a lid-driven square cavity. Comput Fluids 39(6):965–978. https://doi.org/10.1016/j.compfluid.2010.01.009

    Article  Google Scholar 

  11. Jin L, Shen H (2016) Projection- and characteristic-based operator-splitting simulation of mixed convection flow coupling heat transfer and fluid flow in a lid-driven square cavity. Numer Heat Transf Part B: Fundament 70(4):354–371. https://doi.org/10.1080/10407790.2016.1215694

    Article  ADS  Google Scholar 

  12. Arbin N, Saleh H, Hashim I, Chamkha AJ (2016) Numerical investigation of double-diffusive convection in an open cavity with partially heated wall via heatline approach. Int J Therm Sci 100:169–184. https://doi.org/10.1016/j.ijthermalsci.2015.09.017

    Article  Google Scholar 

  13. Basak T, Roy S, Sharma PK, Pop I (2009) Analysis of mixed convection flows within a square cavity with uniform and non-uniform heating of bottom wall. Int J Therm Sci 48(5):891–912. https://doi.org/10.1016/j.ijthermalsci.2008.08.003

    Article  Google Scholar 

  14. Öztop HF, Al-Salem K, Pop I (2011) Mhd mixed convection in a liddriven cavity with corner heater. Int J Heat Mass Transf 54(15):3494–3504. https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.036

    Article  Google Scholar 

  15. Sikdar P, Sunil MD, Sinhamahapatra KP (2021) Lattice Boltzmann simulations of a lid-driven cavity at different moving lengths of the top lid. In: Prabu T, Viswanathan P, Agrawal A, Banerjee J (eds), 46th National conference on fluid mechanics and fluid power, proceedings of the Springer, pp 203–211

    Google Scholar 

  16. Akash B, Sunil MD (2022) Effects of the moving lid length and direction of thermal gradient on the heat transfer characteristics of a square top-lid driven cavity: a numerical study using lattice Boltzmann model. In: 48th National conference on fluid mechanics and fluid power, proceedings of the Springer, pp 202103121

    Google Scholar 

  17. Sathiyamoorthy M, Chamkha A (2010) Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall(s). Int J Therm Sci 49(9):1856–1865. https://doi.org/10.1016/j.ijthermalsci.2010.04.014

    Article  Google Scholar 

  18. Ahmed SE, Öztop HF, Al-Salem K (2014) Natural convection coupled with radiation heat transfer in an inclined porous cavity with corner heater. Comput Fluids 102:74–84. https://doi.org/10.1016/j.compfluid.2014.06.024

    Article  Google Scholar 

  19. Abu-Nada E (2015) Dissipative particle dynamics simulation of combined convection in a vertical lid driven cavity with a corner heater. Int J Therm Sci 92:72–84. https://doi.org/10.1016/j.ijthermalsci.2015.01.022

    Article  Google Scholar 

  20. Ahmed SE, Öztop HF, Al-Salem K (2016) Effects of magnetic field and viscous dissipation on entropy generation of mixed convection in porous lid-driven cavity with corner heater. Int J Numer Meth Heat Fluid Flow 26(5):1548–1566. https://doi.org/10.1108/HFF-11-2014-0344

    Article  MathSciNet  Google Scholar 

  21. Sheremet MA, Pop I, ÖZtop HF, Abu-Hamdeh N (2016) Natural convective heat transfer and nanofluid flow in a cavity with top wavy wall and corner heater. J Hydrodyn Ser B 28(5):873–885. https://doi.org/10.1016/S1001-6058(16)60688-1

  22. Chen Z, Shu C, Wang Y, Yang LM, Tan D (2016) A simplified lattice Boltzmann method without evolution of distribution function. Adv Appl Math Mech 9(1):1–22. https://doi.org/10.4208/aamm.OA-2016-0029

    Article  ADS  MathSciNet  Google Scholar 

  23. Chen Z, Shu C, Tan DS (2017) A truly second-order and unconditionally stable thermal lattice Boltzmann method. Appl Sci-Basel 7(3):277. ARTN27710.3390/app7030277

    Google Scholar 

  24. Chen Z, Shu C, Tan D, Wu C (2018) On improvements of simplified and highly stable lattice Boltzmann method: formulations, boundary treatment, and stability analysis. Int J Numer Meth Fluids 87(4):161–179. https://doi.org/10.1002/fld.4485

    Article  MathSciNet  Google Scholar 

  25. Chen Z, Shu C, Tan D (2017) A simplified thermal lattice Boltzmann method without evolution of distribution functions. Int J Heat Mass Transf 105:741–757. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.032

    Article  Google Scholar 

  26. Chen Z, Shu C, Tan D (2018) High-order simplified thermal lattice Boltzmann method for incompressible thermal flows. Int J Heat Mass Transf 127:1–16. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.067

    Article  Google Scholar 

  27. Gao Y, Yu Y, Yang L, Qin S, Hou G (221) Development of a coupled simplified lattice Boltzmann method for thermal flows. Comput Fluids 229. https://doi.org/10.1016/j.compfluid.2021.105042

  28. Qian YH, D’Humières D, Lallemand P (1992) Lattice BGK models for NavierStokes equation. Europhys Lett (EPL) 17(6):479–484. https://doi.org/10.1209/0295-5075/17/6/001

    Article  ADS  Google Scholar 

  29. Ma Y, Yang ZG (2020) Simplified and highly stable thermal lattice Boltzmann method simulation of hybrid nanofluid thermal convection at high Rayleigh numbers. Phys Fluids 32(1):012009. Artn01200910.1063/1.5139092

    Google Scholar 

  30. Guo Z, Shi B, Zheng C (2002) A coupled lattice BGK model for the Boussinesq equations. Int J Numer Meth Fluids 39(4):325–342. https://doi.org/10.1002/fld.337

    Article  MathSciNet  Google Scholar 

  31. Gao Y, Yang L, Yu Y, Hou G, Hou Z (2021) Improved simplified and highly stable lattice Boltzmann methods for incompressible flows. Int J Modern Phys C 32(06). https://doi.org/10.1142/s0129183121500777

  32. Gao Y, Yang L, Yu Y, Hou G, Hou Z (2021) Consistent forcing scheme in the simplified lattice Boltzmann method for incompressible flows. Commun Computat Phys 30(5):1427–1452. https://doi.org/10.4208/cicp.OA-2021-0058

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hou, G., Chen, C., Qin, S., Gao, Y., Wang, K. (2024). Coupled Simplified Lattice Boltzmann Method Study on Thermal Flows. In: Computational Fluid Dynamics. Engineering Applications of Computational Methods, vol 20. Springer, Singapore. https://doi.org/10.1007/978-981-97-0349-4_11

Download citation

Publish with us

Policies and ethics