Skip to main content

Advances in AMF Research: Isolation, Histochemical Staining, Enumeration, Morphological and Molecular Techniques

  • Chapter
  • First Online:
Arbuscular Mycorrhizal Fungi in Sustainable Agriculture: Inoculum Production and Application

Abstract

The mutualistic association of arbuscular mycorrhizal fungi (AMF) is an important symbiotic association between the roots of plant and fungi that belongs to Glomeromycota order. The AM fungal isolation involves various techniques such as wet sieving and decanting and gradient centrifugation methods which are discussed here. For detection and quantification of AMF in roots, various histochemical staining and light microscopy-based techniques have been widely used. These techniques include trypan blue and DAB (3, 3′-diaminobenzidine) staining methods. The traditional system of identification of AM fungi mainly relied on morphological characterization of spore regarding color, size, and wall structure, etc. Molecular techniques for identification of AM fungi by SSU rDNA analysis give more accurate and scientific results and also used extensively in AMF taxonomic and diversity analysis. In this chapter, we reviewed the progress made in the traditional methods of mycorrhizal research and discussed recently developed techniques which are being utilized extensively in the field of AMF research. The chapter specifically focuses on the isolation and identification of AMF, providing a comprehensive summary of the diverse techniques employed throughout this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schüßler A, Gehrig H, Schwarzott D, Walker C. Analysis of partial Glomales SSU rRNA gene sequences: implications for primer design and phylogeny. Mycol Res. 2001;105:5–15.

    Article  Google Scholar 

  2. Schüßler A, Schwarzott D, Walker C. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res. 2001;105:1413–21.

    Article  Google Scholar 

  3. Smith SE, Gianinazzi-Pearson V. Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu Rev Plant Physiol Plant Mol Biol. 1988;39:221–44.

    Article  CAS  Google Scholar 

  4. Abdel-Fattah GM. Measurement of the viability of arbuscular-mycorrhizal fungi using three different stains; relation to growth and metabolic activities of soybean plants. Microbiol Res. 2001;156:359–67.

    Article  CAS  PubMed  Google Scholar 

  5. Abdel-Fattah GM. Functional activity of VA mycorrhizal fungus (glomus mosseae) in the growth and productivity of soybean plant growing in sterilized soil. Folia Microbiologia. 1997;5:495–502.

    Article  Google Scholar 

  6. Smith FA, Jakobsen I, Smith SE. Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago trunculata. New Phytol. 2000;147:357–66.

    Article  Google Scholar 

  7. Balestrini R, Lumini E, Borriello R, Bianciotto V. Plant-soil biota interactions. In: Chapter 11: soil microbiology, ecology and biochemistry. 4th ed. Elsevier: Academic; 2015.

    Google Scholar 

  8. Kruger M, Kruger C, Walker C, Stockinger H, Schußler A. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol. 2012;193:970–84.

    Article  PubMed  Google Scholar 

  9. Johnson JM, Houngnandan PK, Aboubacry CO, Sanon K, Neyra M, Tuinen DV. Colonization and molecular diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of cowpea (Vigna unguiculata (L.) Walp.) in Benin (West Africa): an exploratory study. Ann Microbiol. 2016;66:207–21.

    Article  Google Scholar 

  10. Nielsen KB, Kjøller R, Bruun HH, Schnoor TK, Rosendahl S. Colonization of new land by arbuscular mycorrhizal fungi. Fungal Ecol. 2016;20:22–9.

    Article  Google Scholar 

  11. Ferrol N, Lanfranco L. Arbuscular mycorrhizal fungi: methods and protocols. In: Part of the book series: methods in molecular biology (MIMB, volume 2146). New York Inc: Springer-Verlag; 2020. ISBN10 1071606026.

    Google Scholar 

  12. Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C. An evidence based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza. 2013;23:515–31.

    Article  PubMed  Google Scholar 

  13. Gerdemann JW, Nicolson TH. Spores of mycorrhizalendogone species extracted from soil by wet-sieving and decanting. Trans Br Mycol Soc. 1963:235–44.

    Google Scholar 

  14. Daniels BA, Skipper HD. Methods for the recovery and quantitative estimation of propagules from soil. In: Schneck NC, editor. Methods and principles of mycorrhizal research. St Paul, Minnesota: American Phytopathological Society; 1982. p. 244.

    Google Scholar 

  15. Koske RE, Tessier B. A convenient permanent slide mounting medium. Mycological Society of America. 1983;34:59.

    Google Scholar 

  16. Morton JB, Benny GL. Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomacae. Mycotaxon. 1990;37:471–91.

    Google Scholar 

  17. Schußler A, Walker C. The Glomeromycota:a species list with new families and genera. Edinburgh & Kew, UK: The Royal Botanic Garden; 2010. Munich,Germany: Botanische Staatssammlung Munich; Oregon, USA: Oregon StateUniversity

    Google Scholar 

  18. Tancredo S. Handbook of arbuscular mycorrhizal Fungi Springer International Publishing Switzerland. 2015 ISBN 978–3–319-24848-6 ISBN 978–3–319-24850-9 (eBook).

    Google Scholar 

  19. Gerdemann JW, Trappe JM. Endogonaceae in the Pacific northwest. Mycolgoia Mem. 1974;5:1–76.

    Google Scholar 

  20. Nicolson TH, Schenck NC. Endogonaceous mycorrhizal endophytes in Florida. Mycologia. 1979;71:179–98.

    Article  Google Scholar 

  21. Hall IR, Fish BJ. A key to the Endogonaceae. Transactions of the Brithish Mycological Society. 1979;73:261–70.

    Article  Google Scholar 

  22. Oehl F, Sýkorová Z, Redecker D, Wiemken A, Sieverding E. Acaulospora alpina, a new arbuscular mycorrhizal fungal species characteristics for high mountainous and alpine regions of the Swiss Alps. Mycologia. 2006;98:286–94.

    Article  PubMed  Google Scholar 

  23. Al-Qarawi AA, Mridha MAU, Dhar PP. Report of Funneliformis mosseae (Nicol. & Gerd.) Gerd. And Trappe from rangeland soil of Saudi Arabia. Res J Biotechnol. 2013;8:96–9.

    Google Scholar 

  24. Oehl F, Souza F, Sieverding E. Revision of Scutellospora and description of fi ve new generaand three new families in the arbuscular mycorrhiza forming Glomeromycetes. Mycotaxon. 2008;106:311–60.

    Google Scholar 

  25. Mehrotra V. Problems associated with morphological taxonomy of AM fungi. Mycorrhizal News. 1997;9(1):1–10.

    Google Scholar 

  26. Brundrett MC, Piche Y, Peterson RL. A new method for observing the morphology of vesicular-arbuscular mycorrhizae. Can J Bot. 1984;62:2128–34.

    Article  Google Scholar 

  27. Bevege DI. A rapid technique for clearing tannins and staining intact roots for detection of mycorrhizas caused by Endogone spp. and some Records of Infection in Australasian plants. Trans Br Mycol Soc. 1968;51:808–10.

    Article  Google Scholar 

  28. Kormanik PP, McGraw AC. Quantification of vesicular-arbuscular mycorrhizae in lant roots. In: Schenck NC, editor. Methods and principles of mycorrhizal research. St. Paul, Minnesota: The American Phytopathological Society; 1982.

    Google Scholar 

  29. Liesche J, Marek M, Günther-Pomorski T. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells. Front Microbiol. 2015;11(6):107.

    Google Scholar 

  30. Nowicki M, Lichocka M, Nowakowska M, Kłosińska U, Kozik EU. A simple dual stain for detailed investigations of plant-fungal pathogen interactions. Veg Crops Res Bull. 2012;77:61–74.

    Google Scholar 

  31. Bhadauria V, Miraz P, Kennedy R, Banniza S, Wei Y. Dual trypan-aniline blue fluorescence staining methods for studying fungus-plant interactions. Biotech Histochem. 2010;85:99–105.

    Article  CAS  PubMed  Google Scholar 

  32. Kumar T, Majumdar A, Das P, Sarafis V, Ghose M. Trypan blue as a fluorochrome for confocal laser scanning microscopy of arbuscular mycorrhizae in three mangroves. Biotech Histochem. 2008;83(3–4):153–9.

    Article  CAS  PubMed  Google Scholar 

  33. Dickson S, Kolesik P. Visualisation of mycorrhizal fungal structures and quantification of their surface area and volume using laser scanning confocal microscopy. Mycorrhiza. 1999;9:205–13.

    Article  Google Scholar 

  34. Dickson S, Schweiger PF, Smith FA, Söderström B, Smith S. Paired arbuscules in the arum-type arbuscular mycorrhizal symbiosis with Linum usitatissimum L. Can J Bot. 2003;81:457–63.

    Article  Google Scholar 

  35. Merryweather JW, Fitter AH. A modified method for elucidating the structure of the fungal partner in a vesicular-arbuscular mycorrhiza. Mycol Res. 1991;95(12):1435–7.

    Article  Google Scholar 

  36. Vierheilig H, Piche Y. A modified procedure for staining arbuscular mycorrhizal fungi in roots. J Plant Nutr Soil Sci. 1998;161:601–2.

    Article  CAS  Google Scholar 

  37. Cao MQ, Wu QS, Zou YN. An improved ink-acetic acid technique for staining arbuscular mycorrhizas of citrus. Int J Agric Biol. 2013;15:386–8.

    CAS  Google Scholar 

  38. Hohnjec N, Vieweg MF, Puhler A, Becker A, Kuster H. Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol. 2005;137:1283–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hulse JD. Review of comprehensive staining techniques used to differentiate arbuscular mycorrhizal fungi from plant root tissues. Acta Sci Agric. 2018;2(7):39–44.

    Google Scholar 

  40. Widden P. The use of glycerin jelly for mounting stained roots for the observation and quantification of endomycorrhizal fungi. Mycologia. 2001;93:1026–7.

    Article  Google Scholar 

  41. Brundrett M. Bougher N. Dell B. Grove T. Malajczuk N. Working with mycorrhizas in forestry and agriculture. ACIAR monograph. Canberra: Australian Centre for International Agricultural Research; 1996. p. 32.

    Google Scholar 

  42. Ames RN, Ingham ER, Reid CPP. Ultraviolet-induced auto-fluorescence of arbuscular mycorrhizal root infections: an alternative to clearing and staining methods for assessing infections. Can J Microbiol. 1982;28:351–5.

    Article  CAS  Google Scholar 

  43. Jabaji-hare SH, Perumalla CJ, Kendrick WB. Auto-fluorescence of vesicles, arbuscules and intercellular hyphae of a vesicular-arbuscular fungus in leek (Allium porrum) roots. Can J Microbiol. 1984;62:2665–9.

    Google Scholar 

  44. Gange AC, Bower E, Brown VK. Positive effects of an arbuscular mycorrhizal fungus on aphid life history traits. Oecologia. 1999;120:123–31.

    Article  PubMed  Google Scholar 

  45. Vierheilig H, Bockenhoff A, Knoblauch M, Juge C, Van Bel AJE, Grundler MW, Piche Y, Wyss U. In vivo observations of the arbuscular mycorrhizal fungus glomus mosseae in roots by confocal laser scanning microscopy. Mycol Res. 1999;103:311–4.

    Article  Google Scholar 

  46. Vierheilig H, Knoblauch M, Juergensen K, van Bel A, Grundler MW, Piche Y. Imaging arbuscular mycorrhizal structures in living roots of Nicotiana tabacum by light, epifluorescence and confocal laser scanning microscopy. Can J Bot. 2001;79:231–7.

    Google Scholar 

  47. Vierheilig H, Schweiger P, Brundrett M. An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol Plant. 2005;125:393–404.

    Article  CAS  Google Scholar 

  48. MacDonald RM, Lewis M. The occurrence of some acid phosphatases and dehydrogenases in the vesicular-arbuscular mycorrhizal fungus glomus mosseae. New Phytol. 1978;80(1):135–41.

    Article  CAS  Google Scholar 

  49. Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollote A. In planta, histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular endomycorrhizal infections. Mycol Res. 1993;97:245–50.

    Article  CAS  Google Scholar 

  50. Saito M. Enzyme activities of the internal hyphae and germinated spores of an arbuscular mycorrhizal fungus, Gigaspora margarita Becker & Hall. New Phytol. 1995;129:425–31.

    Article  CAS  Google Scholar 

  51. Saito M, Stribley DP, Hepper CM. Succinate dehydrogenase activity of external and internal hyphae of a vesiculararbuscular mycorrhizal fungus, glomus mosseae (Nicol. & Gerd.) Gerdmann and Trappe, during mycorrhizal colonization of roots of leek (Allium porrum L.), as revealed by in situ histochemical staining. Mycorrhiza. 1993;4:59–62.

    Article  CAS  Google Scholar 

  52. Thordal-Christensen H, Zhang ZG, Wei YD, Collinge DB. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 1997;11:1187–94.

    Article  CAS  Google Scholar 

  53. Hamel C, Fyles H, Smith DL. Measurement of development of endomycorrhizal mycelium using three different vital stains. New Phytol. 1990;115(2):297–302.

    Article  CAS  PubMed  Google Scholar 

  54. Sylvia D. Activity of external hyphae of vesicular arbuscular mycorrhizal fungi. Soil Biol Biochem. 1988;20:39–43.

    Article  Google Scholar 

  55. Schubert A, Marzachi C, Mazzitelli M, Cravero MC, Boneante-fasolo P. Development of total and viable extraradical mycelium in the vesicular—arbuscular mycorrhizal fungus glomus datum Nicol. & Schenck. New Phytol. 1987;107:183–90.

    Article  Google Scholar 

  56. Walley FL, Germida JJ. Estimating the viability of vesicular-arbuscular mycorrhizae fungal spores using tetrazolium salts as vital stains. Mycologia. 1995;87:273–9.

    Article  Google Scholar 

  57. Cochran WG. Estimation of bacterial densities by means of the most probable number. Biometrics. 1950;6:105–16.

    Article  CAS  PubMed  Google Scholar 

  58. Porter WM. The most probable number method for enumerating infective propagules of vesicular-arbuscular mycorrhizal fungi in soil. Aust J Soil Res. 1979;17:515–9.

    Article  Google Scholar 

  59. Sieverding E. Vesicular arbuscular mycorrhizal management in tropical agroecosystems. Deutsche Gesellschsft fur Technische Zusammenarbeit (GTZ) GmbH. Federal Republic of Germany, 371 1991.

    Google Scholar 

  60. Sieverding E. Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Technical Cooperation, Federal Repuplic of Germany Eschborn. 1991. ISBN 3–88085-462.

    Google Scholar 

  61. Jacquot E, Van Tuinen D, Gianinazzi S, Gianinazzi-Pearson V. Monitoring species of arbuscular mycorrhizal fungi in planta and in soil by nested PCR: amplification to the study of the impact of sewage sludge. Plant Soil. 2000;226:179–88.

    Article  CAS  Google Scholar 

  62. Redecker D. Specific PCR primers to identify arbuscular mycorrhizal fungi within colonized roots. Mycorrhiza. 2000;10:73–80.

    Article  CAS  Google Scholar 

  63. Schüßler A. Glomales SSU rRNA gene diversity. New Phytol. 1999;144:205–7.

    Article  Google Scholar 

  64. van Tuinen D, Jacquot E, Zhao B, Gollotte A, Gianinazzi-Pearson V. Characterization of root colonization profiles by a microcosm of arbuscular mycorrhizal fungi using 25S rDNA targeted nested PCR. Mol Ecol. 1998;7:879–87.

    Article  PubMed  Google Scholar 

  65. Simon L, Lalonde M, Bruns TD. Specific amplification of 18S fungal ribosomal genes from vesicular arbuscular endomycorrhizal fungi colonizing root. Appl Environ Microbiol. 1992;58:291–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols, a guide to methods and applications. San Diego: Academic; 1990. p. 315–22.

    Google Scholar 

  67. Rosendahl S, Sen R. Isozyme analysis of mycorrhizal fungi and their mycorrhiza. Methods Microbiol. 1992;24:169–94.

    Article  CAS  Google Scholar 

  68. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2(2):113–8.

    Article  CAS  PubMed  Google Scholar 

  69. Turenne CY, Sanche SE, Hoban DJ, Karlowsky JA, Kabani AM. Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system. J Clin Microbiol. 1999;37:1846–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee J, Lee S, Young J, Peter W. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol. 2008;65(2):339–49.

    Article  CAS  PubMed  Google Scholar 

  71. Horton TR, Bruns TD. The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol. 2001;10:1855–71.

    Article  CAS  PubMed  Google Scholar 

  72. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 2010;188:223–41.

    Article  PubMed  Google Scholar 

  73. Konig S, Wubet T, Dormann CF, Hempel S, Renker C, Buscot F. TaqMan real-time PCR assays to assess arbuscular mycorrhizal responses to field manipulation of grassland biodiversity: effects of soil characteristics, plant species richness, and functional traits. Appl Environ Microbiol. 2010;76:3765–75.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lloyd-Macgilp SA, Chambers SM, Dodd JC, Fitter AH, Walker C, Young JPW. Diversity of the ribosomal internal transcribed spacers within and among isolates of glomus mosseae and related mycorrhizal fungi. New Phytol. 1996;133:103–11.

    Article  CAS  Google Scholar 

  75. Sanders IR, Alt M, Groppe K, Boller T, Wiemken A. Identification of ribosomal DNA polymorphisms among and within spores of the Glomales: application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytol. 1995;130:419–27.

    Article  CAS  Google Scholar 

  76. Krüger M, Stockinger H, Krüger C, Schüßler A. DNA-based species level detection of Glomeromycota:one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol. 2009;183:212–23.

    Article  PubMed  Google Scholar 

  77. Lanfranco L, Delpero M, Bonfante P. Intrasporal variability of ribosomal sequences in the endomycorrhizal fungus Gigaspora margarita. Mol Ecol. 1999;8:37–45.

    Article  CAS  PubMed  Google Scholar 

  78. de Souza FA, Kowalchuk GA, Leeflang P, van Veen JA, Smit E. PCR-denaturing gradient gel electrophoresis profiling of inter- and intraspecies 18S rRNA gene sequence heterogeneity is an accurate and sensitive method to assess species diversity of arbuscular mycorrhizal fungi of the genus gigaspora. Appl Environ Microbiol. 2004;70:1413–24.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sato K, Suyama Y, Saito M, Sugawara K. A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis. Grassl Sci. 2005;51:179–81.

    Article  CAS  Google Scholar 

  80. Jie W, Cai B, Ge J. Molecular detection and community analysis of arbuscular mycorrhizal fungi in the rhizosphere of Phellodendron amurense. Ann Microbiol. 2012;62:1769–77.

    Article  Google Scholar 

  81. Helgason T, Watson J, Young JPW. Phylogeny of the Glomerales and Diversisporales (fungi: Glomeromycota) from actin and elongation factor 1-alp sequences. FEMS Microbiol Lett. 2003;229:127–32.

    Article  CAS  PubMed  Google Scholar 

  82. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kumar S, Stecher G, Li M. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dickie IA, Fitzjohn RG. Using terminal restriction fragment length polymorphism (T-RFLP) to identify mycorrhizal fungi: a methods review. Mycorrhiza. 2007;17:259–70.

    Article  CAS  PubMed  Google Scholar 

  85. Aldrich-Wolfe L. Distinct mycorrhizal fungal communities on new and established host species in a transitional tropical plant community. Ecology. 2007;88:559–66.

    Article  PubMed  Google Scholar 

  86. Lekberg Y, Koide RT, Rohr JR, Aldrichwolfe L, Morton JB. Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol. 2007;95:95–105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dudhane, M., Borde, M., Thomas, S. (2024). Advances in AMF Research: Isolation, Histochemical Staining, Enumeration, Morphological and Molecular Techniques. In: Parihar, M., Rakshit, A., Adholeya, A., Chen, Y. (eds) Arbuscular Mycorrhizal Fungi in Sustainable Agriculture: Inoculum Production and Application. Springer, Singapore. https://doi.org/10.1007/978-981-97-0296-1_2

Download citation

Publish with us

Policies and ethics