Skip to main content

Plant Molecular Farming of Antimicrobial Peptides for Plant Protection and Stress Tolerance

  • Chapter
  • First Online:
Applications of Plant Molecular Farming

Abstract

Expression of antimicrobial peptides (AMPs) in economically significant plant species, particularly in popular crops, serves a dual purpose. Firstly, their antimicrobial properties can be harnessed for safeguarding plants in agriculture and, secondly, for the development of novel antimicrobial agents for medical applications. Moreover, the process of heterologous expression in plant-based systems, known as plant molecular farming, offers the advantage of yielding AMPs with proper eukaryotic folding and necessary posttranslational modifications, resulting in the production of biologically active substances. The emergence of second-generation biotechnology, enabling the isolation of genes governing desired traits and their precise modification or transfer into targeted varieties (such as intragenesis, cisgenesis, and genome editing), presents a valuable approach for enhancing plant defense responses to phytopathogens by boosting or altering the production of AMPs and defense-oriented phytochemicals. However, several other factors demand careful consideration. These include product yield, efficient extraction, evaluation of functionality and stability, appropriate storage procedures, and overall production costs. This chapter provides a comprehensive overview of AMPs generated in transgenic plants to confer resistance against phytopathogens. It also explores advancements in crop improvement through genome editing, specifically aiming to foster the production of AMPs for plant protection. Furthermore, this chapter highlights key technologies with the potential to significantly enhance the production and productivity of AMPs in agricultural settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPs:

Antimicrobial peptides

Cas:

CRISPR-associated protein

CRISPR:

Clustered regularly interspaced short palindromic repeats

GMOs:

Genetically modified organisms

hGH:

Human growth hormone

LTPs:

Lipid transfer proteins

PDFs:

Plant defensins

PMF:

Plant molecular farming

PR:

Pathogenesis-related proteins

References

  • Abdallah NA, Shah D, Abbas D, Madkour M (2010) Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt. GM Crops 1:344–350

    Article  PubMed  Google Scholar 

  • Aboye TL, Strömstedt AA, Gunasekera S, Bruhn JG, El-Seedi H, Rosengren KJ, Göransson U (2015) A cactus-derived toxin-like cystine knot peptide with selective antimicrobial activity. Chembiochem 16:1068–1077

    Article  CAS  PubMed  Google Scholar 

  • Agizzio AP, Carvalho AO, Suzanna de Fátima FR, Machado OL, Alves EW, Okorokov LA et al (2003) A 2S albumin-homologous protein from passion fruit seeds inhibits the fungal growth and acidification of the medium by Fusarium oxysporum. Arch Biochem Biophys 416:188–195

    Article  CAS  PubMed  Google Scholar 

  • Ahmad K (2014) Molecular farming: strategies, expression systems and bio-safety considerations. Czech J Genet Plant Breed 50:1–10

    Article  Google Scholar 

  • Allefs SJ, De Jong ER, Florack DE, Hoogendoorn C, Stiekema WJ (1996) Erwinia soft rot resistance of potato cultivars expressing antimicrobial peptide tachyplesin I. Mol Breed 2:97–105

    Article  CAS  Google Scholar 

  • Arenas G, Marshall SH, Espinoza V, Ramírez I, Peña-Cortés H (2006) Protective effect of an antimicrobial peptide from Mytilus edulis chilensis expressed in Nicotiana tabacum L. Electron J Biotechnol 9. https://doi.org/10.4067/S0717-34582006000200008

  • Balaji V, Smart CD (2012) Over-expression of snakin-2 and extensin-like protein genes restricts pathogen invasiveness and enhances tolerance to Clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanum lycopersicum). Transgenic Res 21:23–37

    Article  CAS  PubMed  Google Scholar 

  • Barta A, Sommergruber K, Thompson D, Hartmuth K, Matzke MA, Matzke AJ (1986) The expression of a nopaline synthase—human growth hormone chimeric gene in transformed tobacco and sunflower callus tissue. Plant Mol Biol 6:347–357

    Article  CAS  PubMed  Google Scholar 

  • Ben-Nissan G, Weiss D (1996) The petunia homologue of tomato gast1: transcript accumulation coincides with gibberellin-induced corolla cell elongation. Plant Mol Biol 32:1067–1074

    Article  CAS  PubMed  Google Scholar 

  • Berrocal-Lobo M, Segura A, Moreno M, López G, Garcıa-Olmedo F, Molina A (2002) Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol 128:951–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhima B, Al Saiqali M (2017) Antimicrobial peptides from plants and their application. In: Bhukya B, Tangutur AD (eds) Microbial biotechnology technological challenges and developmental trends. Apple Academic Press, Oakville. https://doi.org/10.1201/b19978.eBook

    Chapter  Google Scholar 

  • Bi YM, Cammue BPA, Goodwin PH, Krishna RS, Saxena PK (1999) Resistance to Botrytis cinerea in scented geranium transformed with a gene encoding the antimicrobial protein Ace-AMP1. Plant Cell Rep 18:835–840

    Article  CAS  Google Scholar 

  • Boscariol RL, Monteiro M, Takahashi EK, Chabregas SM, Vieira MLC, Vieira LGE et al (2006) Attacin A gene from Tricloplusia ni reduces susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis ‘Hamlin’. J Am Soc Hortic Sci 131:530–536

    Article  CAS  Google Scholar 

  • Caaveiro JMM, Molina A, González-Mañas JM, Rodrı́guez-Palenzuela P, García-Olmedo F, Goñi FM (1997) Differential effects of five types of antipathogenic plant peptides on model membranes. FEBS Lett 410:338–342

    Article  CAS  PubMed  Google Scholar 

  • Cammue BPA, Thevissen K, Hendriks M, Eggermont K, Goderis IJ, Proost P et al (1995) A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol 109:445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmona MJ, Molina A, Fernández JA, López-Fando JJ, García-Olmedo F (1993) Expression of the α-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens. Plant J 3:457–462

    Article  CAS  PubMed  Google Scholar 

  • Chan YL, Prasad V, Chen KH, Liu PC, Chan MT, Cheng CP (2005) Transgenic tomato plants expressing an Arabidopsis thionin (Thi2.1) driven by fruit-inactive promoter battle against phytopathogenic attack. Planta 221:386–393

    Article  CAS  PubMed  Google Scholar 

  • Chan LY, Gunasekera S, Henriques ST, Worth NF, Le SJ, Clark RJ et al (2011) Engineering pro-angiogenic peptides using stable, disulfide-rich cyclic scaffolds. Blood 118:6709–6717

    Article  CAS  PubMed  Google Scholar 

  • Choi MS, Kim YH, Park HM, Seo BY, Jung JK, Kim ST et al (2009) Expression of BrD1, a plant defensin from Brassica rapa, confers resistance against brown planthopper (Nilaparvata lugens) in transgenic rices. Mol Cells 28:131–137

    Article  CAS  PubMed  Google Scholar 

  • Citiulo F, Crosatti C, Cattivelli L, Biselli C (2021) Frontiers in the standardization of the plant platform for high scale production of vaccines. Plants (Basel) 10:1828

    Article  CAS  PubMed  Google Scholar 

  • Coca M, Penas G, Gómez J, Campo S, Bortolotti C, Messeguer J, Segundo BS (2006) Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta 223:392–406

    Article  CAS  PubMed  Google Scholar 

  • Colgrave ML, Kotze AC, Ireland DC, Wang CK, Craik DJ (2008) The anthelmintic activity of the cyclotides: natural variants with enhanced activity. Chembiochem 9:1939–1945

    Article  CAS  PubMed  Google Scholar 

  • Craik DJ (2012) Host-defense activities of cyclotides. Toxins 4:139–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craik DJ, Daly NL, Bond T, Waine C (1999) Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol 294:1327–1336

    Article  CAS  PubMed  Google Scholar 

  • Cruz LP, Ribeiro SF, Carvalho AO, Vasconcelos IM, Rodrigues R, Cunha MD, Gomes VM (2010) Isolation and partial characterization of a novel lipid transfer protein (LTP) and antifungal activity of peptides from chilli pepper seeds. Protein Pept Lett 17:311–318

    Article  CAS  PubMed  Google Scholar 

  • Dai L, Wang Xie D, Zhang XC, Wang X, Xu Y, Wang Y, Zhang J (2016) The novel gene vpPR4-1 from Vitis pseudoreticulata increases powdery mildew resistance in transgenic Vitis vinifera L. Front Plant Sci 7:695

    Article  PubMed  PubMed Central  Google Scholar 

  • de Zélicourt A, Letousey P, Thoiron S, Campion C, Simoneau P, Elmorjani K et al (2007) Ha-DEF1, a sunflower defensin, induces cell death in Orobanche parasitic plants. Planta 226:591–600

    Article  PubMed  Google Scholar 

  • Diz MS, Carvalho AO, Ribeiro SF, Da Cunha M, Beltramini L, Rodrigues R et al (2011) Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties. Physiol Plant 142:233–246

    Article  CAS  PubMed  Google Scholar 

  • Do HM, Lee SC, Jung HW, Sohn KH, Hwang BK (2004) Differential expression and in situ localization of a pepper defensin (CADEF1) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Plant Sci 166:1297–1305

    Article  CAS  Google Scholar 

  • Dos Santos-Silva CAD, Zupin L, Oliveira-Lima M, Vilela LMB, Bezerra-Neto JP, Ferreira-Neto JR, Benko-Iseppon AM (2020) Plant antimicrobial peptides: state of the art, in silico prediction and perspectives in the omics era. Bioinf Biol Insights 14:1177932220952739

    Article  Google Scholar 

  • Dubreil L, Gaborit T, Bouchet B, Gallant DJ, Broekaert WF, Quillien L, Marion D (1998) Spatial and temporal distribution of the major isoforms of puroindolines (puroindoline-a and puroindoline-b) and non-specific lipid transfer protein (ns-LTP1e1) of Triticum aestivum seeds. Relationships with their in vitro antifungal properties. Plant Sci 138:121–135

    Article  CAS  Google Scholar 

  • During K (1988) Wound-inducible expression and secretion of T4 lysozyme and monoclonal antibodies in Nicotiana tabacum. Doctoral thesis from Mathematics and Sciences College of Cologne University, Cologne (english translation). Mathematisch-Naturwissenschaftlichen Fakultat der Universität zu Köln

    Google Scholar 

  • Duvick JP, Rood T, Rao AG, Marshak DR (1992) Purification and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels. J Biol Chem 267:18814–18820

    Article  CAS  PubMed  Google Scholar 

  • Epple P, Apel K, Bohlmann H (1997) Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum. Plant Cell 9:509–520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ericson ML, Rödin J, Lenman M, Glimelius K, Josefsson LG, Rask L (1986) Structure of the rapeseed 1.7 S storage protein, napin, and its precursor. J Biol Chem 261:14576–14581

    Article  CAS  PubMed  Google Scholar 

  • Fernandez de Caleya R, Gonzalez-Pascual B, García-Olmedo F, Carbonero P (1972) Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol 23:998–1000

    Article  CAS  PubMed  Google Scholar 

  • Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CM (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18:1307–1310

    Article  CAS  PubMed  Google Scholar 

  • Gruber CW (2010) Global cyclotide adventure: a journey dedicated to the discovery of circular peptides from flowering plants. Pept Sci 94:565–572

    Article  CAS  Google Scholar 

  • Gruber CW, Elliott AG, Ireland DC, Delprete PG, Dessein S, Göransson UU, Trabi M, Wang CK, Kinghorn AB, Rob-brecht E, Craik DJ (2008) Distribution and evolution of circular mini-proteins in flowering plants. Plant Cell 20:2471–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafson KR, Sowder RC, Henderson LE, Parsons IC, Kashman Y, Cardellina JH et al (1994) Circulins A and B. Novel human immunodeficiency virus (HIV)-inhibitory macrocyclic peptides from the tropical tree Chassalia parvifolia. J Am Chem Soc 116:9337–9338

    Article  CAS  Google Scholar 

  • Gutierrez-Valdes N, Häkkinen ST, Lemasson C, Guillet M, Oksman-Caldentey KM, Ritala A, Cardon F (2020) Hairy root cultures—a versatile tool with multiple applications. Front Plant Sci 11:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammad IA, Abdel-Razik AB, Soliman ER, Tawfik E (2017) Transgenic potato (Solanum tuberosum) expressing two antifungal thionin genes confer resistance to fusarium spp. J Pharm Biol Sci 12:69–79

    Google Scholar 

  • Hancock R, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  PubMed  Google Scholar 

  • Hao G, Stover GG (2016) Overexpression of a modified plant thionin enhances disease resistance to citrus canker and huanglongbing (HLB). Front Plant Sci 7:1078

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris F, Dennison SR, Phoenix DA (2009) Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Peptide Sci 10:585–606

    Article  CAS  Google Scholar 

  • Hernandez JF, Gagnon J, Chiche L, Nguyen TM, Andrieu JP, Heitz A et al (2000) Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry 39:5722–5730

    Article  CAS  PubMed  Google Scholar 

  • Herzog M, Dorne AM, Grellet F (1995) GASA, a gibberellins regulated gene family from Arabidopsis thaliana related to the tomato GAST1 gene. Plant Mol Biol 27:743–752

    Article  CAS  PubMed  Google Scholar 

  • Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 2:76–78

    Article  Google Scholar 

  • Hoelscher M, Forner J, Bock R (2018) Chloroplast produced antimicrobial peptide fusions for pharma and plant protection. In: The 3rd conference of the International Society for Plant Molecular Farming. Helsinki Congress Paasitorni, Finland, June 11–13, 2018, p 196

    Google Scholar 

  • Holaskova E, Galuszka P, Frebort I, Oz MT (2015) Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnol Adv 33(6 Pt 2):1005–1023

    Article  CAS  PubMed  Google Scholar 

  • Höng K, Austerlitz T, Bohlmann T, Bohlmann H (2021) The thionin family of antimicrobial peptides. PLoS One 16:e0254549

    Article  PubMed  PubMed Central  Google Scholar 

  • Hood EE, Witcher DR, Maddock S, Meyer T, Baszczynski C, Bailey M et al (1997) Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol Breed 3:291–306

    Article  CAS  Google Scholar 

  • Hoshikawa K, Ishihara G, Takahashi H, Nakamura I (2012) Enhanced resistance to gray mold (Botrytis cinerea) in transgenic potato plants expressing thionin genes isolated from Brassicaceae species. Plant Biotechnol 29:87–93

    Article  CAS  Google Scholar 

  • Huang X, Xie W, Gong Z (2000) Characteristics and antifungal activity of a chitin binding protein from Ginkgo biloba. FEBS Lett 478:123–126

    Article  CAS  PubMed  Google Scholar 

  • Imamura T, Yasuda M, Kusano H, Nakashita H, Ohno Y, Kamakura K (2010) Acquired resistance to the rice blast in transgenic rice accumulating the antimicrobial peptide thanatin. Transgenic Res 19:415–424

    Article  CAS  PubMed  Google Scholar 

  • Ireland DC, Colgrave ML, Nguyencong P, Daly NL, Craik DJ (2006) Discovery and characterization of a linear cyclotide from Viola odorata: implications for the processing of circular proteins. J Mol Biol 357:1522–1535

    Article  CAS  PubMed  Google Scholar 

  • Iwai T, Kaku H, Honkura R, Nakamura S, Ochiai H, Sasaki T, Ohashi Y (2002) Enhanced resistance to seed-transmitted bacterial diseases in transgenic rice plants overproducing an oat cell-wall-bound thionin. Mol Plant-Microbe Interact 15:515–521

    Article  CAS  PubMed  Google Scholar 

  • Jaber E, Kovalchuk A, Raffaello T, Keriö S, Teeri T, Asiegbu FO (2018) A gene encoding scots pine antimicrobial protein sp-amp2 (pr-19) confers increased tolerance against Botrytis cinerea in transgenic tobacco. Forests 9:10

    Article  Google Scholar 

  • Jan PS, Huang HY, Chen HM (2010) Expression of a synthesized gene encoding cationic peptide cecropin B in transgenic tomato plants protects against bacterial diseases. Appl Environ Microbiol 76:769–775

    Article  CAS  PubMed  Google Scholar 

  • Jha S, Chattoo BB (2010) Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Res 19:373–384

    Article  CAS  PubMed  Google Scholar 

  • Jung HW, Kim KD, Hwang BK (2005) Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene (CALTPI) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses. Planta 221:361–373

    Article  CAS  PubMed  Google Scholar 

  • Jung YJ, Lee SY, Moon YS, Kang KK (2012) Enhanced resistance to bacterial and fungal pathogens by overexpression of a human cathelicidin antimicrobial peptide (hCAP18/LL-37) in Chinese cabbage. Plant Biotechnol Rep 6(3):9–46

    Google Scholar 

  • Kang BC, Bae SJ, Lee S, Lee JS, Kim A, Lee H, Baek G, Seo H, Kim J, Kim JS (2021) Chloroplast and mitochondrial DNA editing in plants. Nat Plants 7:899–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanzaki H, Nirasawa S, Saitoh H, Ito M, Nishihara M, Terauchi R, Nakamura I (2002) Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theor Appl Genet 105:809–814

    Article  CAS  PubMed  Google Scholar 

  • Kazan K, Rusu A, Marcus JP, Goulter KC, Manners JC (2002) Enhanced quantitative resistance to Leptosphaeria maculans conferred by expression of a novel antimicrobial peptide in canola (Brassica napus L.). Mol Breed 10:63–70

    Article  CAS  Google Scholar 

  • Keresztessy Z, Hughes MA (1998) Homology modelling and molecular dynamics aided analysis of ligand complexes demonstrates functional properties of lipid-transfer proteins encoded by the barley low-temperature-inducible gene family, blt4. Plant J 14:523–533

    Article  CAS  PubMed  Google Scholar 

  • Khaliluev MR, Mamonov AG, Smirnov AN, Kharchenko PN, Dolgov SV (2011) Expression of genes encoding chitin-binding proteins (PR-4) and hevein-like antimicrobial peptides in transgenic tomato plants enhanced resistanse to Phytophthora infestance. Russ Agric Sci 37:297–302

    Article  Google Scholar 

  • Khan RS, Nakamura I, Mii M (2011) Development of disease-resistant marker-free tomato by R/RS site-specific recombination. Plant Cell Rep 30:1041–1053

    Article  CAS  PubMed  Google Scholar 

  • Kiryushkin AS, Ilina EL, Guseva ED, Pawlowski K, Demchenko KN (2022) Hairy CRISPR: genome editing in plants using hairy root transformation. Plan Theory 11:51

    CAS  Google Scholar 

  • Koike M, Okamoto T, Tsuda S, Imai R (2002) A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation. Biochem Biophys Res Commun 298:46–53

    Article  CAS  PubMed  Google Scholar 

  • Koo JC, Lee SY, Chun HJ, Cheong YH, Choi JS, Kawabata SI (1998) Two hevein homologs isolated from the seed of Pharbitis nil L. exhibit potent antifungal activity. Biochim Biophys Acta 1382:80–90

    Article  CAS  PubMed  Google Scholar 

  • Koo J, Jin Chun H, Cheol Park H, Chul Kim M, Duck Koo Y, Cheol Koo S (2002) Over-expression of a seed specific hevein-like antimicrobial peptide from Pharbitis nil enhances resistance to a fungal pathogen in transgenic tobacco plants. Plant Mol Biol 50:441–452

    Article  CAS  PubMed  Google Scholar 

  • Kostov K, Christova P, Slavov S, Batchvarova R (2009) Constitutive expression of a radish defensin gene Rs-Afp2 in tomato increases the resistance to fungal pathogens. Biotechnol Biotechnol Equip 23:1121–1125

    Article  CAS  Google Scholar 

  • Kotilainen M, Helariutta Y, Mehto M, Pollanen E, Albert VA, Elomaa P, Teeri TH (1999) GEG participates in the regulation of cell and organ shape during corolla and carpel development in Gerbera hybrida. Plant Cell 11:1093–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krens FA, Schaart JG, Groenwold R, Walraven AE, Hesselink T, Thissen JT (2011) Performance and long-term stability of the barley hordothionin gene in multiple transgenic apple lines. Transgenic Res 20:1113–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnamurthy K, Balconi C, Sherwood JE, Giroux MJ (2001) Wheat puroindolines enhance fungal disease resistance in transgenic rice. Mol Plant-Microbe Interact 14:1255–1260

    Article  CAS  PubMed  Google Scholar 

  • Lee OS, Lee B, Park N, Koo JC, Kim YH, Karigar C (2003) Pn-AMPs, the hevein-like proteins from Pharbitis nil confers disease resistance against phytopathogenic fungi in tomato, Lycopersicum esculentum. Phytochemistry 62:1073–1079

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Li B, Jin S, Daniell H (2011) Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections. Plant Biotechnol J 9:100–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee IH, Jung YJ, Cho YG, Nou IS, Huq MA, Nogoy FM, Kang KK (2017) SP-LL-37, human antimicrobial peptide, enhances disease resistance in transgenic rice. PLoS One 12:e0172936

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Gasic K, Cammue B, Broekaert W, Korban SS (2003) Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218:226–232

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhou M, Zhang Z, Ren L, Du L, Zhang B et al (2011) Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Funct Integr Genomics 11:63–70

    Article  CAS  PubMed  Google Scholar 

  • Li J, Hu S, Jian W, Xie C, Yang X (2021) Plant antimicrobial peptides: structures, functions, and applications. Bot Stud 62:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang H, Catranis CM, Maynard CA, Powell WA (2002) Enhanced resistance to the poplar fungal pathogen, Septoria musiva, in hybrid poplar clones transformed with genes encoding antimicrobial peptides. Biotechnol Lett 24:383–389

    Article  CAS  Google Scholar 

  • Lindorff-Larsen K, Winther JR (2001) Surprisingly high stability of barley lipid transfer protein, LTP1, towards denaturant, heat and proteases. FEBS Lett 488:145–148

    Article  CAS  PubMed  Google Scholar 

  • López-García B, San Segundo B, Coca M (2012) Antimicrobial peptides as a promising alternative for plant disease protection. In: Rajasekaran K, Cary JW, Jaynes JM, Montesinos E (eds) Small wonders: peptides for disease control. ACS Publications, Washington, DC, pp 263–294

    Chapter  Google Scholar 

  • Mackintosh CA, Lewis J, Radmer LE, Shin S, Heinen SJ, Smith LA, Wyckoff MN, Dill-Macky R, Evans CK, Kravchenko S, Baldridge GD (2007) Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Rep 26:479–488

    Article  CAS  PubMed  Google Scholar 

  • Marcus JP, Green JL, Goulter KC, Manners JM (1999) A family of antimicrobial peptides is produced by processing of a 7S globulin protein in Macadamia integrifolia kernels. Plant J 19:699–710

    Article  CAS  PubMed  Google Scholar 

  • Maria-Neto S, Honorato RV, Costa FT, Almeida RG, Amaro DS, Oliveira JT et al (2011) Bactericidal activity identified in 2S albumin from sesame seeds and in silico studies of structure–function relations. Protein J 30:340–350

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhara I, Iwai T, Seo S (2008) Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense related signal compounds (121/180). Mol Genet Genomics 279:415–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina A, García-Olmedo F (1997) Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2. Plant J 12:669–675

    Article  CAS  PubMed  Google Scholar 

  • Montesinos E (2007) Antimicrobial peptides and plant disease control. FEMS Microbiol Lett 270:1–11

    Article  CAS  PubMed  Google Scholar 

  • Muramoto N, Tanaka T, Shimamura T, Mitsukawa N, Hori E, Koda K et al (2012) Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storage roots. Plant Cell Rep 31:987–997

    Article  CAS  PubMed  Google Scholar 

  • Mylne JS, Chan LY, Chanson AH, Daly NL, Schaefer H, Bailey TL (2012) Cyclic peptides arising by evolutionary parallelism via asparaginyl-endopeptidase–mediated biosynthesis. Plant Cell 24:2765–2778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrot R, Barylski J, Nowicki G et al (2014) Plant antimicrobial peptides. Folia Microbiol 59:181–196

    Article  CAS  Google Scholar 

  • Nguyen GKT, Zhang S, Nguyen NTK, Nguyen PQT, Chiu MS, Hardjojo A, Tam JP (2011) Discovery and caracterization of novel cyclotides originated from chimeric precursors consisting of albumin-1 chain a and domains in the Fabaceae family. J Biol Chem 286:24275–24287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen KK, Nielsen JE, Madrid SM, Mikkelsen JD (1997) Characterization of a new antifungal chitin-binding peptide from sugar beet leaves. Plant Physiol 113:83–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ntui VO, Thirukkumaran G, Azadi P, Khan RS, Nakamura I, Mii M (2010) Stable integration and expression of wasabi defensin gene in Egusi melon (Colocynthis citrullus L.) confers resistance to Fusarium wilt and Alternaria leaf spot. Plant Cell Rep 29:943–954

    Article  CAS  PubMed  Google Scholar 

  • Oard SV (2011) Deciphering a mechanism of membrane permeabilization by α-hordothionin peptide. Biochim Biophys Acta 1808:1737–1745

    Article  CAS  PubMed  Google Scholar 

  • Odintsova TI, Rogozhin EA, Baranov Y, Musolyamov AK, Yalpani N, Egorov TA, Grishin EV (2008) Seed defensins of barnyard grass Echinochloa crusgalli (L.) Beauv. Biochimie 90:1667–1673

    Article  CAS  PubMed  Google Scholar 

  • Odintsova TI, Vassilevski AA, Slavokhotova AA, Musolyamov AK, Finkina EI, Khadeeva NI, Rogozhin EA, Korostyleva TV, Pukhalsky VA, Grishin EV, Egorov TA (2009) A novel antifungal hevein-type peptide from Triticum kiharae seeds with a unique 10-cysteine motif. FEBS J 276:4266–4275

    Article  CAS  PubMed  Google Scholar 

  • Odintsova TI, Slezina MP, Istomina EA (2018) Plant thionins: structure, biological functions and potential use in biotechnology. Vavilov J Genet Breed 22:667–675

    Article  Google Scholar 

  • Pardo-Lopez L, Soberon M, Bravo A (2013) Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev 37:3–22

    Article  CAS  PubMed  Google Scholar 

  • Parisi K, Shafee TMA, Quimbar P, van der Weerden NL, Bleackley MR, Anderson MA (2019) The evolution, function and mechanisms of action for plant defensins. Semin Cell Dev Biol 88:107–118

    Article  CAS  PubMed  Google Scholar 

  • Park KY, Wi SJ (2016) Potential of plants to produce recombinant protein products. J Plant Biol 59(6):559–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patkar RN, Chattoo BB (2006) Transgenic indica rice expressing ns-LTP-like protein shows enhanced resistance to both fungal and bacterial pathogens. Mol Breed 17:159–171

    Article  CAS  Google Scholar 

  • Plan MR, Saska I, Cagauan AG, Craik DJ (2008) Backbone cyclised peptides from plants show molluscicidal activity against the rice pest Pomacea canaliculata (golden apple snail). J Agric Food Chem 56:5237–5241

    Article  CAS  PubMed  Google Scholar 

  • Portieles R, Ayra C, Gonzalez E, Gallo A, Rodriguez R, Chacón O et al (2010) NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions. Plant Biotechnol J 8:678–690

    Article  CAS  PubMed  Google Scholar 

  • Porto WF, Franco OL (2012) Theoretical structural insights into the snakin/GASA family. Peptides 44:163–167

    Article  Google Scholar 

  • Postic G, Gracy J, Périn C, Chiche L, Gelly JC (2018) KNOTTIN: the database of inhibitor cystine knot scaffold after 10 years, toward a systematic structure modeling. Nucleic Acids Res 46(D1):D454–D458

    Article  CAS  PubMed  Google Scholar 

  • Poth AG, Colgrave ML, Lyons RE, Daly NL, Craik DJ (2011) Discovery of an unusual biosynthetic origin for circular proteins in legumes. Proc Natl Acad Sci 108:10127–10132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pränting M, Lööv C, Burman M, Göransson ULF, Andersson DI (2010) The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against gram-negative bacteria. J Antimicrob Chemother 65:1964–1971

    Article  PubMed  Google Scholar 

  • Prasad BD, Jha S, Chattoo BB (2008) Transgenic indica rice expressing Mirabilis jalapa antimicrobial protein (Mj-AMP2) shows enhanced resistance to the rice blast fungus Magnaporthe oryzae. Plant Sci 175:364–371

    Article  CAS  Google Scholar 

  • Quilis J, Meynard D, Vila L, Avilés FX, Guiderdoni E, San Segundo B (2007) A potato carboxypeptidase inhibitor gene provides pathogen resistance in transgenic rice. Plant Biotechnol J 5:537–553

    Article  CAS  PubMed  Google Scholar 

  • Rees DC, Lipscomb WN (1982) Refined crystal structure of the potato inhibitor complex of carboxypeptidase A at 2.5 Å resolution. J Mol Biol 160:475–498

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro C, Bressiani JC, Bressiani AHDA (2007) A study of the consolidation method with albumin to obtain porous beta-TCP ceramics. Mater Res 10:307–310

    Article  CAS  Google Scholar 

  • Ribeiro SM, Almeida RG, Pereira CA, Moreira JS, Pinto MF, Oliveira AC et al (2011) Identification of a Passiflora alata Curtis dimeric peptide showing identity with 2S albumins. Peptides 32:868–874

    Article  CAS  PubMed  Google Scholar 

  • Ritala A, Rischer H, Häkkinen ST, Joensuu JJ, Oksman-Caldentey KM (2020) Proceedings of ISPMF 2018-plant molecular farming. Front Plant Sci 11:492

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivero M, Furman N, Mencacci N, Picca P, Toum L, Lentz E et al (2012) Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens. J Biotechnol 157:334–343

    Article  CAS  PubMed  Google Scholar 

  • Rogozhin E, Ryazantsev D, Smirnov A, Zavriev S (2018) Primary structure analysis of antifungal peptides from cultivated and wild cereals. Plants (Basel) 7:74. https://doi.org/10.3390/plants7030074

    Article  CAS  PubMed  Google Scholar 

  • Roy-Barman S, Sautter C, Chattoo BB (2006) Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses. Transgenic Res 15:435–446

    Article  CAS  PubMed  Google Scholar 

  • Sabala I, Elfstrand M, Farbos I, Clapham D, von Arnold S (2000) Tissue-specific expression of Pa18, a putative lipid transfer protein gene, during embryo development in Norway spruce (Picea abies). Plant Mol Biol 42:461–478

    Article  CAS  PubMed  Google Scholar 

  • Saether O, Craik DJ, Campbell ID, Sletten K, Juul J, Norman DG (1995) Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry 34:4147–4158

    Article  CAS  PubMed  Google Scholar 

  • Sarowar S, Kim YJ, Kim EN, Kim KD, Hwang BK, Islam R, Shin JS (2005) Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep 24:216–224

    Article  CAS  PubMed  Google Scholar 

  • Sathoff AE, Velivelli S, Shah DM, Samac DA (2019) Plant defensin peptides have antifungal and antibacterial activity against human and plant pathogens. Phytopathology 109:402–408

    Article  CAS  PubMed  Google Scholar 

  • Schaefer SC, Gasic K, Cammue B, Broekaert W, Van Damme EJ, Peumans WJ, Korban SS (2005) Enhanced resistance to early blight in transgenic tomato lines expressing heterologous plant defense genes. Planta 222:858–866

    Article  CAS  PubMed  Google Scholar 

  • Schillberg S, Finnern R (2021) Plant molecular farming for the production of valuable proteins—critical evaluation of achievements and future challenges. J Plant Physiol 258–259:153359

    Article  PubMed  Google Scholar 

  • Segura A, Moreno M, Madueño F, Molina A, García-Olmedo F (1999) Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant-Microbe Interact 12:16–23

    Article  CAS  PubMed  Google Scholar 

  • Sels J, Mathys J, De Coninck BMA, Cammue BPA, De Bolle MFC (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46:941–950

    Article  CAS  PubMed  Google Scholar 

  • Shanmugaraj B, Bulaon CJI, Malla A, Phoolcharoen W (2021) Biotechnological insights on the expression and production of antimicrobial peptides in plants. Molecules 26:4032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Sharma S, Imamura M, Yamakawa M, Machii H (2000) Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice. FEBS Lett 484:7–11

    Article  CAS  PubMed  Google Scholar 

  • Shi G, Kang X, Dong F, Liu Y, Zhu N, Hu Y, Xu H, Lao X, Zheng H (2022) DRAMP 3.0: an enhanced comprehensive data repository of antimicrobial peptides. Nucleic Acids Res 50(D1):D488–D496. PMID: 34390348

    Google Scholar 

  • Shukurov RR, Voblikova VD, Nikonorova AK, Komakhin RA, Komakhina VV, Egorov TA et al (2012) Transformation of tobacco and Arabidopsis plants with Stellaria media genes encoding novel hevein-like peptides increases their resistance to fungal pathogens. Transgenic Res 21:313–325

    Article  CAS  Google Scholar 

  • Sinha R, Shukla P (2019) Antimicrobial peptides: recent insights on biotechnological interventions and future perspectives. Protein Peptides Lett 26:79–87

    Article  CAS  Google Scholar 

  • Sterk P, Booij H, Schellekens GA, Van Kammen A, De Vries SC (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell 3:907–921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stieger M, Neuhaus G, Momma T, Schell J, Kreuzaler F (1991) Self-assembly of immunoglobulins in the cytoplasm of the alga Acetabularia mediterranea. Plant Sci 73:181–190

    Article  CAS  Google Scholar 

  • Stotz HU, Spence B, Wang Y (2009) A defensin from tomato with dual function in defense and development. Plant Mol Biol 71:131–143

    Article  CAS  PubMed  Google Scholar 

  • Sunpapao A, Pornsuriya C (2016) Overexpression of β-1, 3-glucanase gene in response to Phytophthora palmivora infection in leaves of Hevea brasiliensis clones. Walailak J Sci Technol 13:35–43

    Google Scholar 

  • Swathi Anuradha T, Divya K, Jami SK, Kirti PB (2008) Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Rep 27:1777–1786

    Article  CAS  PubMed  Google Scholar 

  • Tam JP, Wang S, Wong KH, Tan WL (2015) Antimicrobial peptides from plants. Pharmaceuticals 8:711–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terras FR, Goderis IJ, Van Leuven F, Vanderleyden J, Cammue BP, Broekaert WF (1992) In vitro antifungal activity of a radish (Raphanus sativus L.) seed protein homologous to nonspecific lipid transfer proteins. Plant Physiol 100:1055–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terras FR, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A et al (1995) Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7:573–588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trevino MB, Connell MAO (1998) Three drought-responsive members of the nonspecific lipid-transfer protein gene family in Lycopersicon pennellii show different developmental patterns of expression. Plant Physiol 116:1461–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turrini A, Sbrana C, Pitto L, Ruffini Castiglione M, Giorgetti L, Briganti R et al (2004) The antifungal Dm-AMP1 protein from Dahlia merckii expressed in Solanum melongena is released in root exudates and differentially affects pathogenic fungi and mycorrhizal symbiosis. New Phytol 163:393–403

    Article  CAS  PubMed  Google Scholar 

  • Utkina LL, Andreev YA, Rogozhin EA, Korostyleva TV, Slavokhotova AA, Oparin PB et al (2013) Genes encoding 4-Cys antimicrobial peptides in wheat Triticum kiharae Dorof. et Migush.: multimodular structural organization, instraspecific variability, distribution and role in defence. FEBS J 280:3594–3608

    Article  CAS  PubMed  Google Scholar 

  • van der Weerden NL, Anderson MA (2013) Plant defensins: common fold, multiple functions. Fungal Biol Rev 26:121–131

    Article  Google Scholar 

  • Wang N, Xiao B, Xiong L (2011) Identification of a cluster of PR4-like genes involved in stress responses in rice. J Plant Physiol 168:2212–2224

    Article  CAS  PubMed  Google Scholar 

  • Wang YP, Wei ZY, Zhang YY, Lin CJ, Zhong XF, Wang YL et al (2015) Chloroplast-expressed MSI-99 in tobacco improves disease resistance and displays inhibitory effect against rice blast fungus. Int J Mol Sci 16:4628–4641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong CTT, Rowlands DK, Wong C, Lo TWC, Nguyen GKT, Li H, Tam JP (2012) Orally active peptidic bradykinin b-1 receptor antagonists engineered from a cyclotide scaffold for inflammatory pain treatment. Angewandte Chemie-Int Ed 51:5620–5624

    Article  CAS  Google Scholar 

  • Xing H, Lawrence CB, Chambers O, Davies HM, Everett NP, Li QQ (2006) Increased pathogen resistance and yield in transgenic plants expressing combinations of the modified antimicrobial peptides based on indolicidin and magainin. Planta 223:1024–1032

    Article  CAS  PubMed  Google Scholar 

  • Yamada M (1992) Lipid transfer proteins in plants and microorganisms. Plant Cell Physiol 33:1–6

    CAS  Google Scholar 

  • Yevtushenko DP, Misra S (2007) Comparison of pathogen-induced expression and efficacy of two amphibian antimicrobial peptides, MsrA2 and temporin A, for engineering wide-spectrum disease resistance in tobacco. Plant Biotechnol J 5:720–734

    Article  CAS  PubMed  Google Scholar 

  • Yevtushenko DP, Romero R, Forward BS, Hancock RE, Kay WW, Misra S (2005) Pathogen-induced expression of a cecropin A-melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco. J Exp Bot 56:1685–1695

    Article  CAS  PubMed  Google Scholar 

  • Zakharchenko NS, Rukavtsova EB, Gudkov AT, Buryanov YI (2005) Enhanced resistance to phytopathogenic bacteria in transgenic tobacco plants with synthetic gene of antimicrobial peptide cecropin P1. Russ J Genet 41:1187–1193

    Article  CAS  Google Scholar 

  • Zakharchenko NS, Kalyaeva MA, Buryanov YI (2013) Expression of cecropin P1 gene increases resistance of Camelina sativa (L.) plants to microbial phytopathogenes. Russ J Genet 49:523–529

    Article  CAS  Google Scholar 

  • Zeitler B, Herrera Diaz A, Dangel A, Thellmann M, Meyer H, Sattler M, Lindermayr C (2013) De-novo design of antimicrobial peptides for plant protection. PLoS One 8:e71687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Martin JM, Balint-Kurti P, Huang L, Giroux MJ (2011) The wheat puroindoline genes confer fungal resistance in transgenic corn. J Phytopathol 159:188–190

    Article  Google Scholar 

  • Zhou M, Hu Q, Li Z, Li D, Chen CF, Luo H (2011) Expression of a novel antimicrobial peptide Penaeidin4-1, in creeping bentgrass (Agrostis stolonifera L.) enhances plant fungal disease resistance. PLoS One 6:e24677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YJ, Agbayani R, Moore PH (2007) Ectopic expression of Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen vigor. Planta 226:87–97

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Consejo Nacional de Ciencia y Tecnología, grant CdF-2019/6360 to RA-V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul Alvarez-Venegas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valencia-Lozano, E., Cabrera-Ponce, J.L., Alvarez-Venegas, R. (2024). Plant Molecular Farming of Antimicrobial Peptides for Plant Protection and Stress Tolerance. In: Kole, C., Chaurasia, A., Hefferon, K.L., Panigrahi, J. (eds) Applications of Plant Molecular Farming. Concepts and Strategies in Plant Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-97-0176-6_5

Download citation

Publish with us

Policies and ethics