Skip to main content

Conventional and Emerging Materials Used in FRP-Concrete Composites for Earthquake Resistance

  • Chapter
  • First Online:
RC Structures Strengthened with FRP for Earthquake Resistance

Part of the book series: Composites Science and Technology ((CST))

  • 56 Accesses

Abstract

Fibre-reinforced polymer (FRP) has gained significant applications in concrete composites. A FRP consists of tendons or fibres encased in a polymer matrix or bonding agent [1]. Different FRPs can be produced by selecting fibres and polymers of suitable materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rafieizonooz M, Kim J-HJ, Varaee H, Nam Y, Khankhaje E (2023) Testing methods and design specifications for FRP-prestressed concrete members: a review of current practices and case studies. J Build Eng 73:106723. https://doi.org/10.1016/j.jobe.2023.106723

    Article  Google Scholar 

  2. Mincigrucci L, Civera M, Lenticchia E, Ceravolo R, Rosano M, Russo S (2023) Comparative structural analysis of GFRP, reinforced concrete, and steel frames under seismic loads. Materials (Basel) 16. https://doi.org/10.3390/MA16144908

  3. Zou Y, Yu K, Heng J, Zhang Z, Peng H, Wu C, Wang X (2023) Feasibility study of new GFRP grid web—concrete composite beam. Compos Struct 305:116527. https://doi.org/10.1016/J.COMPSTRUCT.2022.116527

    Article  Google Scholar 

  4. Turkowski P, Łukomski M, Sulik P, Roszkowski P (2017) Fire resistance of CFRP-strengthened reinforced concrete beams under various load levels. Procedia Eng 172:1176–1183. https://doi.org/10.1016/J.PROENG.2017.02.137

    Article  Google Scholar 

  5. Shi X, Guo T, Song L, Yang J (2023) Cyclic load tests and finite element modeling of self-centering hollow-core FRP-concrete-steel bridge columns. Alexandria Eng J 70:301–314. https://doi.org/10.1016/J.AEJ.2023.03.001

    Article  Google Scholar 

  6. Xiao Y (2004) Strengthening of concrete columns applications of Frp composites. 7:335–344

    Google Scholar 

  7. Boru E (2023) Torsional strengthening of steel I beams with different GFRP configurations. Structures 56:104859. https://doi.org/10.1016/j.istruc.2023.07.049

    Article  Google Scholar 

  8. Dwight DW, Begum S (2017) Glass fiber reinforcements. Compr Compos Mater II(1):243–268. https://doi.org/10.1016/B978-0-12-803581-8.03812-1

    Article  Google Scholar 

  9. Benmokrane B, Wang P, Ton-That TM, Rahman H, Robert J-F (2002) Durability of glass fiber-reinforced polymer reinforcing bars in concrete environment. J Compos Constr 6:143–153. https://doi.org/10.1061/(asce)1090-0268(2002)6:3(143)

    Article  Google Scholar 

  10. Rubino F, Nisticò A. Tucci F, Carlone P (2020) Marine application of fiber reinforced composites: a review. J Mar Sci Eng 8:26. https://doi.org/10.3390/JMSE8010026

  11. Safwat EM, Khater AGA, Abd-Elsatar AG, Khater GA (2021) Glass fiber-reinforced composites in dentistry. Bull Natl Res Cent 45. https://doi.org/10.1186/s42269-021-00650-7

  12. Ye YY, Da Liang S, Feng P, Zeng JJ (2021) Recyclable LRS FRP composites for engineering structures: current status and future opportunities. Compos Part B Eng 212. https://doi.org/10.1016/j.compositesb.2021.108689

  13. Mirdehghan SA (2021) Fibrous polymeric composites. Eng Polym Fibrous Mater 1–58. https://doi.org/10.1016/B978-0-12-824381-7.00012-3

  14. Sim J, Park C, Moon DY (2005) Characteristics of basalt fiber as a strengthening material for concrete structures. Compos Part B Eng 36:504–512. https://doi.org/10.1016/j.compositesb.2005.02.002

    Article  Google Scholar 

  15. Mohamed OA, Al Hawat W, Keshawarz M (2021) Durability and mechanical properties of concrete reinforced with basalt fiber-reinforced polymer (Bfrp) bars: towards sustainable infrastructure. Polymers (Basel) 13. https://doi.org/10.3390/polym13091402

  16. AL-Kharabsheh BN, Arbili MM, Majdi A, Alogla SM, Hakamy A, Ahmad J, Deifalla AF (2022) Basalt fibers reinforced concrete: strength and failure modes. Materials (Basel) 15. https://doi.org/10.3390/ma15207350

  17. Al-Rousan ET, Khalid HR, Rahman MK (2023) Fresh, mechanical, and durability properties of basalt fiber-reinforced concrete (BFRC): a review. Dev Built Environ 14:100155. https://doi.org/10.1016/j.dibe.2023.100155

    Article  Google Scholar 

  18. Han T, Dong Z, Zhu H, Wu G, Zhao X (2023) Compression behavior of concrete columns combinedly confined by FRP externally wrapped Fe-SMA strips. Eng Struct 294:116754. https://doi.org/10.1016/J.ENGSTRUCT.2023.116754

    Article  Google Scholar 

  19. Dharmavarapu P, Sreekara SR (2022) Aramid fibre as potential reinforcement for polymer matrix composites: a review. Emergent Mater 5:1561–1578. https://doi.org/10.1007/s42247-021-00246-x

    Article  Google Scholar 

  20. Dai J-G, Bai Y-L, Teng JG (2011) Behavior and modeling of concrete confined with FRP composites of large deformability. J Compos Constr 15:963–973. https://doi.org/10.1061/(asce)cc.1943-5614.0000230

    Article  Google Scholar 

  21. Zeng JJ, Zhuge Y, Da Liang S, Bai YL, Liao JJ, Zhang L (2022) Durability assessment of PEN/PET FRP composites based on accelerated aging in alkaline solution/seawater with different temperatures. Constr Build Mater 327:126992. https://doi.org/10.1016/j.conbuildmat.2022.126992

    Article  Google Scholar 

  22. Ye YY, Zeng JJ, Li PL (2022) A state-of-the-art review of FRP-Confined Steel-Reinforced Concrete (FCSRC) structural members. Polymers (Basel) 14. https://doi.org/10.3390/POLYM14040677

  23. Iihoshi C, Fukuyama H, Matsumoto Y, Abe S (1999) Strengthening effect of reinforced concrete elements with polyacetal fiber sheets (1999)

    Google Scholar 

  24. Chen C, Li X, Li C, Zhou Y, Sui L (2022) Optimized flax FRP stirrup in reinforced concrete beam: material property and shear performance. Compos Struct 302:116219. https://doi.org/10.1016/j.compstruct.2022.116219

    Article  Google Scholar 

  25. Liu Z, Wang H, Yang L, Du J (2022) Research on mechanical properties and durability of flax/glass fiber bio-hybrid FRP composites laminates. Compos Struct 290:115566. https://doi.org/10.1016/j.compstruct.2022.115566

    Article  Google Scholar 

  26. Chen C, Yang Y, Yu J, Yu J, Tan H, Sui L, Zhou Y (2020) Eco-friendly and mechanically reliable alternative to synthetic FRP in externally bonded strengthening of RC beams: natural FRP. Compos Struct 241:112081. https://doi.org/10.1016/j.compstruct.2020.112081

    Article  Google Scholar 

  27. Liu X, Li Y (2018) Experimental study of seismic behavior of partially corrosion-damaged reinforced concrete columns strengthened with FRP composites with large deformability. Constr Build Mater 191:1071–1081. https://doi.org/10.1016/j.conbuildmat.2018.10.072

    Article  Google Scholar 

  28. Ko H, Sato Y (2008) Bond stress—slip relationship between FRP sheet. J Compos Constr 11:419–426. https://doi.org/10.1061/(ASCE)1090-0268(2007)11

    Article  Google Scholar 

  29. Zamri FA, Primus WC, Shaari AH, Sinin AE (2019) Technical note: Effects of polyurethane resin on the physical and mechanical properties of wood fiber/Palm kernel shell composite boards. Wood Fiber Sci 51:448–454. https://doi.org/10.22382/wfs-2019-043

  30. Sales FCP, Ariati RM, Noronha VT, da Costa RRC, Ribeiro JE (2021) PU tensile tests: conventional and digital image correlation analysis. Procedia Struct Integr 37:389–396. https://doi.org/10.1016/j.prostr.2022.01.100

    Article  Google Scholar 

  31. Dong K, Hu K, Gao W (2016) Fire behavior of full-scale CFRP-strengthened RC beams protected with different insulation systems. J Asian Archit Build Eng 15:581–588. https://doi.org/10.3130/jaabe.15.581

    Article  Google Scholar 

  32. Zhang X, Wu J, Geng Z, Qin Z, Pan YT, Zhang W, Yang R (2023) Effect of diluent on the properties of intrinsically flame-retardant vinyl ester resins and their fiberglass-reinforced composites. Compos Commun 37:101441. https://doi.org/10.1016/J.COCO.2022.101441

    Article  Google Scholar 

  33. Liu TQ, Wang R, Zhen S, Feng P (2023) A binary resin system of epoxy and phenol-formaldehyde for improving the thermo-mechanical behavior of FRP composites. Constr Build Mater 389:131790. https://doi.org/10.1016/J.CONBUILDMAT.2023.131790

    Article  Google Scholar 

  34. Al-Lebban Y (2017) Polyurethane fiber reinforced polymer strengthening of shear deficient reinforced concrete beams. College Eng Comput Sci. https://stars.library.ucf.edu/etd/5670. Accessed 13 Sept 2023

  35. Huang S, Bachtiar EV, Yan L, Kasal B (2022) Bond behaviour and thermal stability of flax/glass hybrid fibre reinforced polymer–timber structures connected by polyurethane. Constr Build Mater 322:126456. https://doi.org/10.1016/J.CONBUILDMAT.2022.126456

    Article  Google Scholar 

  36. Zafar A, Andrawes B (2015) Seismic behavior of SMA–FRP reinforced concrete frames under sequential seismic hazard. Eng Struct 98:163–173. https://doi.org/10.1016/J.ENGSTRUCT.2015.03.045

    Article  Google Scholar 

  37. Suhail R, Amato G, McCrum DP (2020) Active and passive confinement of shape modified low strength concrete columns using SMA and FRP systems. Compos Struct 251:112649. https://doi.org/10.1016/J.COMPSTRUCT.2020.112649

    Article  Google Scholar 

  38. Tsuchiya K (2011) Mechanisms and properties of shape memory effect and superelasticity in alloys and other materials: a practical guide. Woodhead Publishing Limited. https://doi.org/10.1533/9780857092625.1.3

  39. Dong K, Gao Y, Yang S, Yang Z, Jiang J (2023) Experimental investigation and analytical prediction on bond behaviour of CFRP-to-concrete interface with FRP anchors. Case Stud Constr Mater 19:e02510. https://doi.org/10.1016/J.CSCM.2023.E02510

    Article  Google Scholar 

  40. Khorasani M, Muciaccia G, Consiglio AN, Mostofinejad D (2023) Evaluating the behavior and bond properties of FRP spike anchors under confined conditions and elevated temperature. Compos Struct 322:117407. https://doi.org/10.1016/J.COMPSTRUCT.2023.117407

    Article  Google Scholar 

  41. Li Z, del Rey Castillo E, Henry RS, Thompson A (2023) Axial compression testing of concrete prisms confined by FRP spike anchors and estimation of failure modes. Compos Struct 322:117403. https://doi.org/10.1016/J.COMPSTRUCT.2023.117403

  42. Altunişik AC, Akbulut YE, Adanur S, Kaya A, Günaydin M, Mostofi S, Mosallam A (2023) Evaluating the high-temperature endurance of FRP-strengthened concrete using an innovative insulation system: experimental investigation. J Build Eng 73:106444. https://doi.org/10.1016/J.JOBE.2023.106444

    Article  Google Scholar 

  43. Risco GV, Zania V, Giuliani L (2023) Numerical assessment of post-earthquake fire response of steel buildings. Saf Sci 157:105921. https://doi.org/10.1016/J.SSCI.2022.105921

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Chaudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, S., Chaudhary, S. (2024). Conventional and Emerging Materials Used in FRP-Concrete Composites for Earthquake Resistance. In: Singh, S.B., Murty, C.V.R. (eds) RC Structures Strengthened with FRP for Earthquake Resistance. Composites Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-97-0102-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0102-5_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0101-8

  • Online ISBN: 978-981-97-0102-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics