Skip to main content

Sector-Wise Assessment of Carbon Footprint Across Major Cities in India

  • Chapter
  • First Online:
Book cover Assessment of Carbon Footprint in Different Industrial Sectors, Volume 2

Part of the book series: EcoProduction ((ECOPROD))

Abstract

The concentration of greenhouse gases in the atmosphere has increased rapidly due to anthropogenic activities, resulting in a significant increase of the earth’s temperature and causing global warming. These effects are quantified using an indicator such as global warming potential, expressed in units of carbon dioxide equivalent (CO2eq), to indicate the carbon footprint of a region. Carbon footprint is thus a measure of the impact of human activities on the environment in terms of the amount of greenhouse gases produced. This chapter focuses on calculating the amount of three important greenhouses gases—carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)—and thereby determining the carbon footprint of the major cities in India. National greenhouse gas inventories are used for the calculation of greenhouse gas emissions. Country-specific emission factors are used where all the emission factors are available. Default emission factors from Intergovernmental Panel on Climate Change guidelines are used when there are no country-specific emission factors. Emission of each greenhouse gas is estimated by multiplying fuel consumption by the corresponding emission factor. To calculate total emissions of a gas from all its source categories, emissions are summed over all source categories. The current study estimates greenhouse gas emissions (in terms of CO2 equivalent) in major Indian cities and explores the linkages with the population and gross domestic product (GDP). Carbon dioxide equivalent emissions from Delhi, Greater Mumbai, Kolkata, Chennai, Greater Bangalore, Hyderabad, and Ahmedabad were found to be 38633.2, 22783.08, 14812.10, 22090.55, 19796.5, 13734.59, and 9124.45 Gg CO2eq, respectively. The major sector-wise contributors to the total emissions in Delhi, Greater Mumbai, Kolkata, Chennai, Greater Bangalore, Hyderabad, and Ahmedabad are the transportation sector (32, 17.4, 13.3, 19.5, 43.5, 56.86 and 25 %, respectively), the domestic sector (30.26, 37.2, 42.78, 39, 21.6, 17.05 and 27.9 %, respectively), and the industrial sector (7.9, 7.9, 17.66, 20.25, 12.31, 11.38 and 22.41 %, respectively). Chennai emits 4.79 tons of CO2 equivalent emissions per capita, the highest among all the cities, followed by Kolkata, which emits 3.29 tons of CO2 equivalent emissions per capita. Chennai also emits the highest CO2 equivalent emissions per GDP (2.55 tons CO2 eq/lakh Rs.), followed by Greater Bangalore, which emits 2.18 tons CO2 eq/lakh Rs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ADB (2006) Energy efficiency and climate change considerations for on-road transport in Asia. Asian Development Bank, Manila

    Google Scholar 

  • Adhya TK, Rath AK, Gupta PK, Rao VR, Das SN, Parida KM, Parashar DC, Sethunathan N (1994) Methane emission from flooded rice fields under irrigated conditions, Biol Fertil Soils 18:245–248

    Google Scholar 

  • Aggarwal PK, Pathak H, Bhatia A, Kumar S (2003) Final report on inventory of nitrous oxide emission from agricultural soils, submitted by Winrock International India on behalf of Ministry of Environment and Forest, Government of India

    Google Scholar 

  • Alexander M (1961) Introduction to soil microbiology. Wiley, New York, pp 227–244

    Google Scholar 

  • ALGAS (1998) Asia least cost greenhouse gas abatement strategy project, country case study India. Asian Development Bank, Manila

    Google Scholar 

  • Andrew JE (2008) What is carbon footprint? An overview of definitions and methodologies. In: Vegetable Industry carbon footprint study – discussion papers and workshop, 26 Sept 2008. Horticulture Australia Limited, Sydney

    Google Scholar 

  • Anjali S, Devotta S (2007) Indoor air quality of public places in Mumbai India in terms of volatile organic compounds. Environ Monit Assess 133:127–138

    Article  Google Scholar 

  • ARAI (2007). Emission factor development for Indian vehicles—as a part of ambient air quality monitoring and emission source apportionment studies. Automotive Research Association of India, Project No. AFL/2006-07/IOCL/EmissionFactor Project/Final Rep., Pune

    Google Scholar 

  • Baidya S, Borken Kleefeld J (2009) Atmospheric emissions from road transportation in India. Energy Policy 37(2009):3812–3822

    Article  Google Scholar 

  • Balachandran S, Meena BR, Khillare PS (2000) Particle size distribution and its elemental composition in the ambient air of Delhi. Environ Int 26(1–2):49–54

    Google Scholar 

  • Bandyopadhyay TK, Goyal P, Singh MP (1996) Generation of methane from paddy fields and cattle in India and its reduction at source. Atmos Environ 30(14):2569–2574

    Article  CAS  Google Scholar 

  • Basic Port Statistics of India (2009–10) Transport research wing, Ministry of Shipping, Government of India, 2011

    Google Scholar 

  • Battle M (1996) Atmospheric gas concentrations over the past century measured in air from firn at South Pole. Nature 383:231–235

    Article  CAS  Google Scholar 

  • Benjamin KS, Marilyn AB (2009) Twelve metropolitan carbon footprints: a preliminary comparative global assessment. Energy Policy 38:4856–4869 (2010)

    Google Scholar 

  • Berner W, Oeschger H, Stauffer B (1980) Information on the CO2 cycle from ice core studies. Radiocarbon 22:227–235

    CAS  Google Scholar 

  • Bernstein L, Roy J, Delhotal KC, Harnisch J, Matsuhashi R, Price L, Tanaka K, Worrell E, Yamba F, Fengqi Z (2007) Industry. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Bhatia A, Pathak H, Aggarwal PK (2004) Inventory of methane and nitrous oxide emissions from agriculture soils of India and their global warming potential. Curr Sci 87(3):317--324

    Google Scholar 

  • Bhatia P (2008) Methodologies for measuring the carbon footprint, June 2008, ICTS and climate change, international symposium, London

    Google Scholar 

  • Bhatia A, Pathak H, Aggarwal PK (2008) Inventory of methane and nitrous oxide emissions from agricultural soils of India and their global warming potential. Curr Sci 87(3):317–324

    Google Scholar 

  • Bhattacharya S, Mitra AP (1998) Greenhouse gas emissions in India for year 1990, centre on global change. National Physical Laboratory, New Delhi

    Google Scholar 

  • Blake DR et al (1982) Global increase in atmospheric methane concentrations between 1978 and 1980. Geophys Res Lett 9:477–480

    Article  CAS  Google Scholar 

  • Bouwman AF (1990) Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In: Bouman AF (ed) Soils and the greenhouse effect. Wiley, New York, pp 61–127

    Google Scholar 

  • Bronson KF, Neue HU, Singh U, Abao EB Jr (1997) Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil: I. Residue, nitrogen and water management. Soil Sci Soc Am J 61:981–987

    Google Scholar 

  • BSI (2008) Publicly available specification 2050. Specification for the assessment of the life cycle greenhouse gas emissions of goods and services, British Standards Institute

    Google Scholar 

  • Butler JH, Battle M, Bender ML, Montzka SA, Clark AD, Saltzman ES, Sucher CM, Severinghaus JP, Elkins JW (1999) A record of atmospheric halocarbons during the twentieth century from polar firn air. Nature 399:749–755

    Article  CAS  Google Scholar 

  • Carbon Trust (2007a) Carbon footprint measurement methodology, version 1.1. The Carbon Trust, London http://www.carbontrust.co.uk. Accessed 27 Feb 2007

  • Carbon Trust (2007b) Carbon footprinting. An introduction for organizations. Available online at http://www.carbontrust.co.uk/publications/publicationdetail.htm?productid=CTV033. Accessed 5 May 2008

  • Census of India (2001). Houses, household amenities and assets: India, States and Union Territories—2001 census, Office of the Registrar General, Census of India, Government of India, New Delhi www.censusindia.net/2001housing/housing_tables_main.html

  • Census of India (2011) Cities having population 1 lakh and above, Census. http://censusinida.gov.in

  • Chakraborty N, Sarkar GM, Lahiri SC (2000) Methane emission from rice paddy soils, aerotolerance of methanogens and global thermal warming. Environmentalist 20:343–350

    Article  Google Scholar 

  • Chakraborty N, Mukherjee I, Santra AK, Chowdhury S, Chakraborty S, Bhattacharya S, Mitra AP, Sharma C (2007) Measurement of CO2, CO, SO2 and NO emissions from coal based thermal power plants in India. Atmos Environ 42(6):1073–1082 (February 2008)

    Google Scholar 

  • Chattopadhyay S, Gupta A, Ray S (2009) Municipal solid waste management in Kolkata, India. Waste Manage 29(4):1449–1458

    Article  CAS  Google Scholar 

  • Chelani AB, Devotta Sukumar (2007) Air quality assessment in Delhi: before and after CNG as fuel. Environ Monit Assess 125:257–263

    Article  CAS  Google Scholar 

  • Chun M, Mei-ting J, Xiao-chun Z, Hong-yuan L (2011) Energy consumption and carbon emissions in a coastal city in China, Procedia Environ Sci 4:1–9

    Google Scholar 

  • Cook E (1971) The flow of energy in an industrial society. Energy and power; a scientific American book. W. H. Freeman and Co. San Francisco, pp 83–91

    Google Scholar 

  • Courchene TJ, Allan JR (2008) Climate change: the case of carbon tariff/tax. Policy Options 3:59–64

    Google Scholar 

  • CPCB (2007) Transport fuel quality for year 2005. Central Pollution Control Board, Government of India, New Delhi

    Google Scholar 

  • Das Anjana, Jyoti Parikh (2004) Transport scenarios in two metropolitan cities in India: Delhi and Mumbai. Energy Convers Manage 45(15–16):2603–2625

    Google Scholar 

  • Delmas RJ, Ascencio JM, Legrand M (1980) Polar ice evidence that atmospheric CO2 20,000 yr BP was 50 % of present. Nature 284:155–157

    Article  CAS  Google Scholar 

  • Dhakal Shobhakar (2009) Urban energy use and carbon emissions from cities in China and policy implications. Energy Policy 37(11):4208–4219

    Article  Google Scholar 

  • Dhamija (2010) Executive summary of inventorization of greenhouse gases—sources and sinks in Delhi, climate change agenda for Delhi 2009–12, Government of Delhi

    Google Scholar 

  • Dlugokencky EJ, Masarie KA, Lang PM, Tans PP (1998) Continuing decline in the growth rate of the atmospheric methane burden. Nature 393:447–450

    Article  CAS  Google Scholar 

  • EEA (2009) EMEP/EEA Air pollutant emission inventory guidebook. European Environment Agency, Copenhagen

    Google Scholar 

  • EPA (2010) Methane and nitrous oxide emissions from natural sources. United States Environmental Protection Agency

    Google Scholar 

  • Etheridge DM (1996) Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J Geophys Res 101:4115–4128

    Article  CAS  Google Scholar 

  • Fadel MEI, Massoud M (2001) Methane emissions from wastewater management. Environ Pollut 114(2):177–185

    Article  Google Scholar 

  • Fan Y, Liu L-C, Wu G, Tsai H-T, Wei Y-M (2007) Changes in carbon intensity in China: empirical findings from 1980–2003. Ecol Econ 62(3–4):683-691

    Google Scholar 

  • Ferry JG (1992) Biochemistry of methanogenesis. CRC CRic Rev Biochem Mol Biol 27:473–503

    Article  CAS  Google Scholar 

  • Fraser PJ, Khalil MAK, Rasmussen RA, Crawford AJ (1981) Trends of atmospheric methane in the southern hemisphere. Geophys Res Lett 8:1063–1066

    Article  CAS  Google Scholar 

  • Garg A, Shukla PR (2002) Emission inventory of India. Tata McGraw Hill, New Delhi, pp 84–89

    Google Scholar 

  • Garg A, Sumana B, Shukla PR, Dadhwal VK (2001) Regional and sectoral assessment of greenhouse gas emissions in India. Atmos Environ 35:2679–2695

    Google Scholar 

  • Garg A, Shukla PR, Manmohan K, Deepa M (2004) Indian methane and nitrous oxide emissions and mitigation flexibility. Atmos Environ 38:1965–1977

    Google Scholar 

  • Garg A, Shukla PR, Manmohan K (2006) The sectoral trends of multi gas emissions inventory of India. Atmos Environ 40:4608–4620

    Google Scholar 

  • Garg A, Bhushan K, Shukla PR (2011) Methane emissions in India: Sub regional and sectoral trends. Atmos Environ 45(28):4922–4929

    Google Scholar 

  • Gaur AC, Neelkantan S, Dargan KS (1984) Organic manures, 2nd edn. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Ghose Mrinal K, Paul R, Banerjee SK (2004) Assessment of the impacts of vehicular emissions on urban air quality and its management in Indian context: the case of Kolkata. Environ Sci Policy 7(4):345–351

    Article  Google Scholar 

  • Ghosh S, Majumdar D, Jain MC (2003) Methane and nitrous oxide emissions from an irrigated rice of North India. Chemosphere 51(3):181–195

    Google Scholar 

  • Global Footprint Network (2007), Ecological footprint: overview, global footprint network, http://www.footprintnetwork.org/gfn_sub.php?content=footprint_overview

  • Goldemberg J (1995) Energy needs in developing countries and sustainability. Science 269:1058–1059

    Article  CAS  Google Scholar 

  • Goyal P, Rama Krishna TV (1998) Various methods of emission estimation of vehicular traffic in Delhi. Transp Res Part D 3:309–317

    Article  Google Scholar 

  • Graedel TE, McRae JE (1980) On the possible increase of atmospheric methane and carbon monoxide concentrations during the last decade. Geophys Res Lett 7:977–979

    Article  CAS  Google Scholar 

  • Granli T, Bockman OC (1994) Nitrous oxide from agriculture. Norw J Agric Sci 12:128

    Google Scholar 

  • Gupta R (2005) Oxford climate change action plan. Oxford city council environment scrutiny committee

    Google Scholar 

  • Gupta AK, Subhankar N, Mukhopadhyay UK (2006) Characterisation of PM10, PM2.5 and benzene soluble organic fraction of particulate matter in an urban area of Kolkata, India. Environ Monit Assess 115:205–222

    Google Scholar 

  • Gupta PK, Arvind KJ, Koul S, Sharma P, Pradhan V, Vandana G, Sharma C, Nahar S (2007) Methane and nitrous oxide emission from bovine manure management practices in India, Environ Pollut 146(1):219–224

    Google Scholar 

  • Gupta PK, Gupta V, Sharma C, Das SN, Purkait N, Adhya TK, Pathake H, Ramesh R, Baruah KK, Venkatratnam L, Gulab Singh CSP Iyer (2009) Development of methane emission factors for Indian paddy fields and estimation of national methane budget. Chemosphere 74(4):590–598

    Google Scholar 

  • Gurjar BR, van Aardenne JA, Lelieveld J, Mohan M (2004) Emission estimates and trends (1990–2000) for megacity Delhi and implications. Atmos Environ 38(33):5663–5681

    Article  CAS  Google Scholar 

  • Gurjar BR, Nagpure AS, Prashant K, Nalin S (2010) Pollutant emissions from road vehicles in mega-city Kolkata, India: past and present trends. J Air Pollut Control 10(2):18–30

    Google Scholar 

  • Hammond G (2007) Time to give due weight to the ‘carbon footprint’ issue. Nature 445(7125):256

    Article  CAS  Google Scholar 

  • Harnisch J, Eisenhauer A (1998) Natural CF4 and SF6 on Earth. Geophys Res Lett 25:2401–2404

    Article  CAS  Google Scholar 

  • Hasselmann K (1993) Optimal fingerprints for the detection of time dependent climate change. J Clim 6:1957-1971

    Article  Google Scholar 

  • Hawksworth J Hoehn T, Tiwari A (eds) (2009) Pricewaterhouse coopers UK economic outlook

    Google Scholar 

  • Hingane LS, Rupa Kumar K, Ramana Murthy BV (1985) Long-term trends of surface air temperature in India. Int J Climatol 5:521–528

    Article  Google Scholar 

  • Hoornweg D, Sugar L, Gomez CLT (2011) Cities and greenhouse gas emissions: moving forward. Environ Urbanization 23:207–227

    Article  Google Scholar 

  • Houghton JT, Callander BA, Varney SK (eds) (1992) Climate change 1992, the supplementary report to the ipcc scientific assessment, intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • HRA (2008) House Rent Allowance, Sixth Central Pay Commission, Ministry of Finance, Government of India

    Google Scholar 

  • http://unfccc.int/ghg_data/items/3825.php Global warming potentials: Climate change 1995, the science of climate change: summary for policymakers. Technical Summary of the working group I report, p 22, 1995. (http://unfccc.int/ghg_data/items/3825.php)

  • http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38382. Accessed 5 Dec 2012

  • http://www.iso.org/iso/catalogue_detail?csnumber=38381. Accessed 9 Dec 2012

  • Humphrey CR, Buttel FR (1984) Environment energy and society. Wadsworth Publishers, Belmont

    Google Scholar 

  • INCCA (2010) India: Greenhouse Gas Emissions (2007). Indian Network for Climate Change Assessment (INCCA), The Ministry of Environment and Forests, Government of India

    Google Scholar 

  • Indermuhle A (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome Antarctica. Nature 398:121–126

    Article  CAS  Google Scholar 

  • IPCC (1996) Report of the twelfth season of the Intergovernmental Panel on Climate Change, Mexico City, 11–13 Sept 1996

    Google Scholar 

  • IPCC (1997) Revised 1996 IPCC guidelines for national greenhouse gas inventories. In: Houghton JT, Meira Filho LG, Lim B, Treanton K, Mamaty I, Bonduki Y (eds)

    Google Scholar 

  • IPCC (1998) Principles governing IPCC work. Approved at the fourteenth session, Vienna (1–3 October 1998)

    Google Scholar 

  • IPCC (2000). Good practice guidance and uncertainty management in national greenhouse gas inventories. In: Penman J, Kruger D, Galbally I, Hiraishi T, Nyenzi B, Emmanul S, Buendia L, Hoppaus R, Martinsen T, Meijer J, Miwa K Tanabe K (eds) Published for the IPCC by the Institute for Global Environmental Strategies, Japan. ISBN 4-88788-000-6

    Google Scholar 

  • IPCC (2001a) Climate change 2001: the scientific basis. contribution of working group I to the third assessment report of the intergovernmental panel on climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Cambridge University Press, Cambridge, p 881

    Google Scholar 

  • IPCC (2001b) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change In: Houghton JT et al (eds) Cambridge University Press, Cambridge p 881

    Google Scholar 

  • IPCC (2003) Good practice guidance for land use, land-use change and forestry. In: Jim P, Michael G, Taka H, Thelma K, Dina K, Riitta P, Leandro B, Kyoko M, Todd N, Kiyoto T, Fabian W (eds) Institute for Global Environmental Strategies (IGES) for the IPCC ISBN 4-88788-003-7

    Google Scholar 

  • IPCC (2006) IPCC guidelines for national greenhouse gas inventories, prepared by the national greenhouse gas inventories programme. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) IGES, Japan

    Google Scholar 

  • IPCC (2007a) Climate change 2007: synthesis report. contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. In: Core Writing Team: Pachauri RK, Reisinger A (eds) IPCC, Geneva, p 104

    Google Scholar 

  • IPCC (2007b) Contribution of working group III to the fourth assessment report of the intergovernment panel on climate change. Mertz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Cambridge University Press, Cambridge

    Google Scholar 

  • ISO (2006a) ISO 14064-1:2006. Greenhouse gases part 1: specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals

    Google Scholar 

  • ISO (2006b) ISO 14064-2:2006. Greenhouse gases part 2: specification with guidance at the project level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancements

    Google Scholar 

  • Jain MC, Kumar S, Wassmann R, Mitra S, Singh SD, Singh RP, Singh R, Yadav AK, Gupta S (2000) Methane emissions from irrigated rice fields in Northern India (New Delhi). Nutr Cycl Agroecosyst 58:75–83

    Article  CAS  Google Scholar 

  • Jalihal SA, Reddy TS (2006) CNG: an alternative fuel for public transport. J Sci Ind Res 65:426–431

    CAS  Google Scholar 

  • Jalihal SA, Ravinder K, Reddy TS (2005) Traffic characteristics in India. In: Proceedings of the Eastern Asia society for transportation studies, volume 5, pp 1009–1024

    Google Scholar 

  • Jessica A (2008) Report- what is carbon footprint, 19 February 2008. The Edinburg Centre for Carbon Management

    Google Scholar 

  • Kampschreur MJ, Temmnik H, Kleerebezem R, Jetten MSM, van Loosdrecht MCM (2009) Nitrous oxide emission during wastewater treatment. Water Res 43(17):4093–4103

    Google Scholar 

  • Keeling CD (1961) The concentration and isotopic abundances of carbon dioxide in rural and marine air. Geochim Cosmochim Acta 24:277–298

    Article  CAS  Google Scholar 

  • Keeling CD (1998) Rewards and penalties of monitoring the Earth. Ann Rev Energy Environ 23:25–82

    Article  Google Scholar 

  • Kennedy C, Steinberger J, Gasson B, Hansen Y, Hillman T, Havranek M, Pataki D, Phdungsilp A, Ramaswami A, Mendez GV (2009) Greenhouse gas emissions from global cities. Environ Sci Technol 2009(43):7297–7302

    Article  Google Scholar 

  • Kennedy C, Steinberger J, Gasson B, Hansen Y, Hillman T, Havranek M, Pataki D, Phdungsilp A, Ramaswami A, Mendez GV (2010) Methodology for inventorying greenhouse gas emissions from global cities. Energy Policy 38(2010):4828–4837

    Article  CAS  Google Scholar 

  • Khalil MAK, Rasmussen RA (1988) Nitrous oxide: trends and global mass balance over the last 3000 years. Ann Glaciol 10:73–79

    CAS  Google Scholar 

  • Khosa MK, Sidhu BS, Benbi DK (2010) Effect of organic materials and rice cultivars on methane emission from rice field. J Environ Biol 31:281–285

    CAS  Google Scholar 

  • Koyama T (1963) Gaseous metabolism in lake sediments and paddy soils and the production of atmospheric methane and hydrogen. J Geophys Res 68:3971–3973

    Article  CAS  Google Scholar 

  • Kulkarni P, Chandra V (2000) Atmospheric polycyclic aromatic hydrocarbons in Mumbai, India. Atmos Environ 34(2000):2785–2790

    Article  CAS  Google Scholar 

  • Kumar S (2003) Cleaner production technology and bankable energy efficiency drives in fertilizer industry in India to minimize greenhouse gas emissions—case study. In: Greenhouse gas control technologies—sixth international conference 2003, p 1031–1036

    Google Scholar 

  • Kumar U, Jain MC, Pathak H, Kumar S, Majumdar D (2000) Nitrous oxide emissions from different fertilizers and its mitigation by nitrification inhibitors in irrigated rice. Biol Fertil Soils 32(2000):474–478

    Article  CAS  Google Scholar 

  • Kumar S, Gaikwad SA, Shekdar AV, Kshirsagar PS, Singh RN (2004) Estimation method for national methane emission from solid waste landfills. Atmos Environ 38:3481–3487

    Google Scholar 

  • Kumar S, Bhattacharya JK, Vaidya AN, Chakrabarti T, Devotta S, Akolkar AB (2009) Assessment of the status of municipal solid waste management in metro cities, state capitals, class I cities and class II towns in India: An insight. Waste manage 29:883–895

    Google Scholar 

  • Larsen HN, Hertwich EG (2010) Identifying important characteristics of municipal carbon footprints. Ecol Econ 70:60–66

    Article  Google Scholar 

  • Latha K, Madhavi V, Krishna P, Badarinath KVS (2003) Aerosol characteristics and radiative forcing over industrial areas of urban environment—a case study from Hyderabad and its environs. IGU J Indian Geophys Union 7(1):25–29

    Google Scholar 

  • Le Treut H, Somerville R, Cubasch U, Ding Y, Mauritzen C, Mokssit A, Peterson T, Prather M (2007) Historical overview of climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis. contribution of working group I to the Fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Loganathan D, Kamatchiammal S, Ramanibai R, Jayakar Santhosh D, Saroja V, Indumathi S (2011) Status of groundwater at Chennai city, India. Indian J Sci Technol 4(5):566–572

    Google Scholar 

  • Lu Y, Huang Y, Zou J, Zheng X (2006) An inventory of N2O emissions from agriculture in China using precipitation-rectified emission factor and background emission. Chemosphere 65(11):1915–1924

    Article  CAS  Google Scholar 

  • Machida T (1995) Increase in the atmospheric nitrous oxide concentration during the last 250 years. Geophys Res Lett 22:2921–2924

    Article  CAS  Google Scholar 

  • Majumdar D, Kumar S, Pathak H, Jain MC, Kumar U (2000) Reducing nitrous oxide emission from rice field with nitrification inhibitors. Agric Ecosyst Environ 81(2000):163–169

    Article  CAS  Google Scholar 

  • Matthew E (1999) Greenhouse warming potential model. Based J Chem Educ 76:1702–1705

    Google Scholar 

  • MCI (2008) Motor Coach Industries (MCi’s) go green glossary, viewed 15th Sept 2008. http://www.mcicoach.com/gogreen/greenGlossary.htm

  • McKinnon AC, Piecyk MI (2010) Logistics 2050: moving freight by road in a very low carbon world. Logistics Research Centre, Heriot-Watt University, Edinburgh

    Google Scholar 

  • McMichael AJ, Woodruff R, Hales S (2006) Climate change and human health: present and future risks. The Lancet 367(9513):859–869

    Article  Google Scholar 

  • MFL (2010), Madras Fertilizers Limited, 2009–10

    Google Scholar 

  • MiEF (2004) India’s Initial National Communication to the United Nations Framework Convention on Climate Change. Ministry of Environment and Forests, Government of India, New Delhi, pp 38–41

    Google Scholar 

  • Mitra AP (1992) Greenhouse gas emission in India: 1991 methane campaign, science report no. 2. Council of Scientific and Industrial Research and Ministry of Environment and Forests, New Delhi

    Google Scholar 

  • Mitra AP, Bhattacharya S (2002) Climate change and greenhouse gas inventories: projections, impacts and mitigation strategies. In: Shukla PR, Sharma SK, Ramana PV (eds) Climate change and India: issues, concerns and opportunities. Tata McGraw-Hill Publishing Company Limited, New Delhi

    Google Scholar 

  • Mitra S, Jain MC, Kumar S, Bandyopadhyay SK, Kalra N (1999a) Effect of rice cultivars on methane emission. Agric Ecosyst Environ 73(3):177–183

    Article  CAS  Google Scholar 

  • Mitra S, Jain MC, Kumar S, Bandyopadhyay SK, Kalra N (1999b) Effect of rice cultivars on methane emission. Agric Ecosyst Environ 73(3):177–183

    Article  CAS  Google Scholar 

  • Mittal ML, Sharma C (2003) Anthropogenic emissions from energy activities in India: generation and source characterization (part II: emissions from vehicular transport in India). http://www.osc.edu/research/pcrm/emissions/India_Report_1Pagelayout.pdf

  • Mitra AP, Sharma C (2002) Indian aerosols: present status. Chemosphere 49(9):1175--1190

    Google Scholar 

  • MMRDA (2008) Mumbai Urban Infrastructure Project—Mumbai Metropolitan Region Development Authority

    Google Scholar 

  • MOA (2003) Livestock Census 1997 and 2003

    Google Scholar 

  • MOA (2005) 17th Indian Livestock Census,—All India Summary Report, Department of Animal Husbandry and Dairing, Ministry of Agriculture, Government of India

    Google Scholar 

  • MOA (2007) 18th Indian Livestock Census,—All India Summary Report. Department of Animal Husbandry and Dairying, Ministry of Agriculture, Government of India

    Google Scholar 

  • MOA (2008) Agricultural Statistics at a Glance (2008) Directorate of Economics and Statistics, Department of Agriculture and Cooperation (DAC), Ministry of Agriculture, Government of India

    Google Scholar 

  • Moomaw WR (1996) Industrial emissions of greenhouse gases. Energy Policy 24(10–11):951–968

    Google Scholar 

  • MoPNG (2010) Statistics on Petroleum and Natural Gas, 2009–10

    Google Scholar 

  • MoUD (2009) Area, population and density of cities and towns of India—2001, area and density—metropolitan cities, town and country planning organization. Ministry of Urban Development, Government of India

    Google Scholar 

  • Murthy NS, Panda M et al (1997a) Economic development, poverty reduction and carbon emissions in India. Energy Econ 19(3):327–354

    Article  Google Scholar 

  • Murthy NS, Panda M et al (1997b) Economic growth, energy demand and carbon dioxide emissions in India: 1990–2020. Environ Dev Econ 2(2):173–193

    Article  Google Scholar 

  • Naqvi SMK, Sejian V (2011) Global climate change: role of livestock. Asian J Agric Sci 3(1):19–25

    Google Scholar 

  • Narasimha R, Sant G, Rajan SC (2009) An overview of Indian energy trends: low carbon growth and development challenges. Prayas Energy Group, India

    Google Scholar 

  • NATCOM (2004) India’s Initial National Communication to the UNFCC. Ministry of Environment and Forests, Government of India

    Google Scholar 

  • NEERI (2005) Assessment of status of municipal solid waste management in metro cities, state capitals, class—I cities and class—II towns. NEERI, Nagpur

    Google Scholar 

  • Neftel A (1982) Ice core sample measurements give atmospheric CO2 content during the Past 40,000 Yr. Nature 295:220–223

    Article  CAS  Google Scholar 

  • Neftel A, Moor E, Oeschger H, Stauffer B (1985) Evidence from polar ice cores for the increase in atmospheric CO2 in the past 2 centuries. Nature 315:45–47

    Article  CAS  Google Scholar 

  • Nelson GC, Richard R, Siwa M, Tingju Z, Xiaoli L, Puja J (2009) Greenhouse gas mitigation: issues for indian agriculture. International Food Policy Research Institute

    Google Scholar 

  • Nicholas S (2006) Stern review on the economics of climate change. UK Treasury

    Google Scholar 

  • North GR, Kim K-Y (1995) Detection of forced climate signals part II: simulation results. J Clim 6:409–417

    Article  Google Scholar 

  • Pachauri S (2004) An analysis of cross-sectional variations in total household energy requirements in India using micro survey data. Energy Policy 32(15):1723–1735

    Article  Google Scholar 

  • Pachauri S, Spreng D (2002) Direct and indirect energy requirements of households in India. Energy Policy 30(6):511–523

    Article  Google Scholar 

  • Pachauri RK, Sridharan PV (1998) In: Pachauri RK, Batra RK (eds) Directions innovations and strategies for harnessing action for sustainable development. TERI, New Delhi

    Google Scholar 

  • Pandey D, Agarwal M, Pandey JS (2011) Carbon footprint: current methods of estimation. Environ Monit Assess 178:135–160

    Article  CAS  Google Scholar 

  • Parashar DC, Rai J, Gupta PK, Singh N (1991) Parameters affecting methane emission from paddy fields. Indian J Radio Space Phys 20:12–17

    CAS  Google Scholar 

  • Parashar DC, Gupta PK, Rai J, Sharma RC, Singh N (1993) Effect of soil temperature on methane emission from paddy fields. Chemosphere 26(1–4):247–250

    Google Scholar 

  • Parashar DC, Mitra AP, Sinha SK, Gupta PK, Rai J, Sharma RC, Singh N, Kaul S, Lal G, Chaudhary A, Ray HS, Das SN, Parida KM, Rao SB, Kanung SP, Ramasami T, Nair BU, Swamy M, Gupta SK, Singh AR, Saikia BK, Barua AKS, Pathak MG, Iyer CPS, Gopalakrishnan M, Sane PV, Singh SN, Banerjee R, Sethunathan N, Adhya TK, Rao VR, Palit P, Saha AK, Purkait NN, Chaturvedi GS, Sen SP, Sen M, Sarkar B, Banik A, Subbaraya BH, Lal S, Venkatramani S (1994) Methane budget from Indian paddy fields. In: Minami K, Mosier A, Sass RL (eds) CH4 and N2O: global emissions and controls from rice fields and other agricultural and industrial sources. Tsukuba, Japan: NIAES Series 2. pp 27–39

    Google Scholar 

  • Parikh KJ (2001) Poverty-environment Nexus. Int J Glob Environ Issues 1(1):2001

    Google Scholar 

  • Parikh KJ, Manoj KP, Murthy NS (1997) Consumption patterns by income groups and carbon dioxide implications for India: 1990--2010. Int J Energy Issues 9:237--255

    Google Scholar 

  • POST (2006) Carbon footprint of electricity generation. POST note 268, October 2006, Parliamentary Office of Science and Technology, London. http://www.parliament.uk/documents/upload/postpn268.pdf

  • Qader MR (2009) Electricity consumption and GHG emissions in GCC countries. Energies 2009(2):1201–1213

    Article  Google Scholar 

  • Raghuvansi SP, Chandra A, Raghav AK (2006) Carbon dioxide emissions from coal based power generation in India. Energy Convers Manag 47(4):427–441

    Article  Google Scholar 

  • Ramachandra TV, Bachamanda S (2007) Environmental audit of municipal solid waste management. Int J Environ Technol Manage 7(3/4):369–391

    Google Scholar 

  • Ramachandra T, Shwetmala V (2009) Emissions from India’s transport sector: state wise synthesis, atmospheric environment. doi:10.1016/j.atmosenv.2009.07.015

  • Ramachandra T, Shwetmala V (2012) Decentralised carbon footprint analysis for opting climate change mitigation strategies in India. Renew Sustain Energy Rev 16(8):5820–5833

    Google Scholar 

  • Ramachandra T, Uttam Kumar V (2010) Greater Bangalore: emerging urban heat, Island. GIS Dev 14(1). (http://www.gisdevelopment.net/application/urban/sprawl/Greater-Bangalore-Emerging-Urban-Heat-Island.htm)

  • Ramachandra TV, Aithal BH, Sanna DD (2012) Insights to urban dynamics through landscape spatial pattern analysis. Int J Appl Earth Obs Geoinf 18:329–343

    Article  Google Scholar 

  • Ramanathan V (1975) Greenhouse effect due to chlorofluorocarbons: Climatic implications. Science 190:50–52

    Article  CAS  Google Scholar 

  • Ramanathan R, Parikh JK (1999) Transport sector in India: an analysis in the context of sustainable development. Transp Policy 6(1):35–45

    Article  Google Scholar 

  • Rao MN, Reddy BS (2007) Variations in energy use by Indian households: an analysis of micro level data. Energy 32(2):143–152

    Article  Google Scholar 

  • Rao JK, Shantaram MV (2003) Soil and water pollution due to open landfills. In: Proceedings of the sustainable landfill management workshop. 3–5 Dec 2003 Anna University, Chennai, pp 27–38

    Google Scholar 

  • Ravindra K, Eric W, Sushil KT, Suman M, van Grieken R (2006) Assessment of air quality after the implementation of CNG as fuel in public transport in Delhi, India. Environ Monit Assess 115(1–3):405–417

    Google Scholar 

  • Rawat Manju A, Ramanathan L (2011) Assessment of methane flux from municipal solid waste (MSW) landfill areas of Delhi, India. J Environ Prot 2:399–407

    Google Scholar 

  • RCF (2010) 32nd Annual Report, Rashtriya Chemical and Fertilizers Limited, 2009–10

    Google Scholar 

  • Reddy BS, Srinivas T (2009) Energy use in Indian household sector-an actor oriented approach. Energy 34(8):992–1002

    Article  Google Scholar 

  • Reddy MS, Boucher O, Venkataraman C (2002) Seasonal carbonaceous aerosol emissions from open biomass burning in India. Bull IASTA 14:239–243

    Google Scholar 

  • Road Transport Year Book (2007–2009) Transport Research Wing, Ministry of Road Transport and Highways, Government of India, 2011

    Google Scholar 

  • Sass RL, Fisher FM Jr (1998) Methane from irrigated rice cultivation. In: Parashar DC, Sharma C, Mitra AP (eds) Global environment chemistry. pp 77–94

    Google Scholar 

  • Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 360:330–333

    Article  Google Scholar 

  • Schumacher K, Sathaye J (1999) India’s cement industry: productivity, energy efficiency and carbon emissions, energy analysis program. Lawrence Berkeley National Laboratory, Berkely

    Google Scholar 

  • Schutz H, Holzapfel-Pschorn A, Conrad R, Rennenberg H, Seiler W (1989) A three-year continuous record on the influence of daytime season and fertilizer treatment on methane emission rates from an Italian rice paddy field. J Geophys Res 94:16405–16416

    Article  Google Scholar 

  • Seiler W, Holzapfel-Pschorn A, Conrad R, Scharfe D (1984) Methane emission from rice paddies. J Atmos Chem 1:241–268

    Article  CAS  Google Scholar 

  • Shafik N, Bandyopadhyay S (1992) Economic growth and environmental quality: time series and cross-country evidence. In: Policy research working paper series 904, The World Bank

    Google Scholar 

  • Sharma C, Pundir R (2008) Inventory of greenhouse gases and other pollutants from the transport sector: Delhi. Iran J Environ Health Sci Eng 5(2):117–124

    CAS  Google Scholar 

  • Sharma C, Gupta PK, Parashar DC (1995) Nitrous oxide estimates from paddy fields and forests in India. Indian J Radio Space Phys 24:311–313

    CAS  Google Scholar 

  • Sharma SK, Bhattacharya S, Garg A (2009) Greenhouse gas emissions from India: a perspective. Curr Sci 90:326–333

    Google Scholar 

  • Sharma SK, Asim C, Pinaki S, Subhashis B, Anil S, Pradeep KD, Ajay KS, Suman M, Arti B, Madhu M, Rajesh K, Jha CS, Murthy MSR, Ravindranath NH, Jayant KB, Karthik M, Bhattacharya S, Chauhan R (2011) Greenhouse gas inventory estimates for India. Curr Sci 101:405–415

    Google Scholar 

  • Singh A, Gangopadhyay S, Nanda PK, Bhattacharya S, Sharma C, Bhan C (2008) Trends of greenhouse gas emissions from the road transport sector in India. Sci Total Environ 390:124–131

    Google Scholar 

  • Singhal KK, Mohini M, Jha AK, Gupta PK (2005) Methane emission estimates from enteric fermentation in Indian livestock: Dry matter intake approach. Curr Sci 88(1):119–127

    CAS  Google Scholar 

  • Sinha SK (1995) Global methane emission from rice paddies: excellent methodology but poor extrapolation. Curr Sci 68(6):643–646

    CAS  Google Scholar 

  • Sikdar PK,  Singh A (2009) Transportation sector: energy and GHG emissions. In: Proceedings of the seminar on energy and GHG emissions. Seminar on energy for sustainable infrastructure development and lifestyle. Consulting engineers india, New Delhi, 23--24 February 2009

    Google Scholar 

  • SOE—State of Environment Report for Delhi (2010) Department of Environment and Forests, Government of Delhi

    Google Scholar 

  • Steele LP (1996) Atmospheric methane, carbon dioxide, carbon monoxide, hydrogen, and nitrous oxide from Cape Grim air samples analyzed by gas chromatography. In: Francey RJ, Dick AL, Derek N (eds) Baseline atmospheric program Australia, 1994–95. Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne, pp 107–110

    Google Scholar 

  • Stern D, Common M, Barbier E (1996) Economic growth and environmental degradation: the environmental kuznets curve and sustainable development. World Dev 24:1151–1160

    Article  Google Scholar 

  • Swamy M, Bhattacharya S (2006) Budgeting anthropogenic greenhouse gas emission from Indian livestock using country-specific emission coefficients. Curr Sci 91(10):1340–1353

    CAS  Google Scholar 

  • Talyan V, Dahiya RP, Anand S, Sreekrishnan TR (2007) Quantification of methane emission from municipal solid waste disposal in Delhi. Resour Conserv Recycl 50(3):240–259

    Article  Google Scholar 

  • TEDDY (2006, 2011) TERI Energy Data Directory and Yearbook. The Energy and Resource Institute, New Delhi

    Google Scholar 

  • Vijay B, Mehta VM (2010) Atmospheric particulate pollutants and their relationship with meteorology in Ahmedabad. Aerosol Air Qual Res 10:301–315

    Google Scholar 

  • Wakdikar S (2002) Compressed natural gas: a problem or a solution? Curr Sci 82(1):25–29

    Google Scholar 

  • Weiss RF (1981) The temporal and spatial distribution of tropospheric nitrous oxide. J Geophys Res 86:7185–7195

    Article  CAS  Google Scholar 

  • Weisser D (2007) A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy 32(9):1543–1559

    Google Scholar 

  • World Bank http://worldbank.org. Accessed 20th Aug 2013

  • Wright LA, Coello J, Kemp S, Williams I (2011) Carbon footprinting for climate change management in cities. Carbon Manage 2(1):49–60

    Google Scholar 

  • Yamulki S, Jarvis SC, Owen P (1999) Methane emission and uptake from soils as influenced by excreta deposition from grazing animals. J Environ Qual 28:676–682

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are grateful to the NRDMS Division, The Ministry of Science and Technology, Government of India; The Ministry of Environment and Forests, Government of India, ISRO-IISc Space Technology Cell, Indian Institute of Science for the financial and infrastructure support. Remote-sensing data were downloaded from public domain (http://glcf.umiacs.umd.edu/data). The latest data of IRS 1D were procured from the National Remote Sensing Centre, Hyderabad

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Ramachandra .

Editor information

Editors and Affiliations

Annexure

Annexure

Carbon footprint of Delhi

Sector

CO2 emissions (Gg)

CH4 emissions (Gg)

N2O emissions (Gg)

CO2 equivalent (Gg)

2009–2010

2009–2010

2009–2010

2009–2010

1. Electricity consumption

 

Nondomestic

5402.6

0.079

0.081

5428.6

Railway traction and Delhi metro rail corporation

456.31

0.007

0.007

458.51

Othersa

1553.8

0.023

0.023

1561.3

1(a) Auxiliary consumption and supply losses

853.55

0.011

0.013

857.69

2. Road transportation

 

Vehicles using fuels other than CNG

10405

12.77

0.479

10868

CNG vehicles

1371.4

2.99

0.272

1527

3. Domestic sector

11639

0.353

0.144

11690

4. Industrial sector

3034.7

0.044

0.045

3049.3

5. Agriculture

 

Paddy cultivation

_

0.682

_

17.05

Soils

_

_

0.833

248.26

Burning of crop residue

_

0.079

0.002

2.68

Electricity

78.92

0.001

0.001

79.3

6. Livestock management

 

Enteric fermentation

_

22.82

_

570.57

Manure management

_

1.72

0.0002

43.09

7. Waste

 

Municipal solid waste

_

34.13

_

853.19

Domestic waste water

_

46.07

0.761

1378.8

Total

34795

121.79

2.66

38633

  1. Note aOthers include electricity consumption in worship/hospital, staff, Delhi International Airport Limited, Delhi Jal Board

Carbon footprint of greater Mumbai

Sector

CO2 emissions (Gg)

CH4 emissions (Gg)

N2O emissions (Gg)

CO2 equivalent (Gg)

2009–2010

2009–2010

2009–2010

2009–2010

1. Electricity consumption

 

Commercial sector

4031.80

0.071

0.055

4049.85

Othersa

1285.73

0.023

0.017

1291.49

1(a) Auxiliary consumption and supply losses

1242.14

0.024

0.016

1247.54

1(b) Fugitive emissions

 

Refinery crude throughput

_

0.0013

_

0.033

2.a. Road transportation

 

Vehicles using fuels other than CNG

3174.58

3.85

0.168

3320.66

CNG vehicles

471.18

1.12

0.108

531.34

2.b. Navigation

113.03

0.010

0.003

114.18

3. Domestic sector

8444.48

0.396

0.067

8474.32

4. Industrial sector

 

Ammonia production

654.50

_

_

654.50

Glass industry

21.09

0.001

0.0002

21.16

Electricity consumption

1118.04

0.020

0.0151

1123.04

5. Agriculture

 

Soils

_

_

0.023

6.95

6. Livestock management

 

Enteric fermentation

_

0.746

_

18.66

Manure management

_

0.055

0.000006

1.38

7. Waste

 

Municipal solid waste

_

34.80

_

869.92

Domestic waste water

_

35.36

0.584

1058.09

Total

20556.56

76.47

1.06

22783.08

  1. Note aOthers include electricity consumption in advertisements, railways, street light, religious, crematorium and burial grounds

Carbon footprint of Kolkata

Sector

CO2 emissions (Gg)

CH4 emissions (Gg)

N2O emissions (Gg)

CO2 equivalent (Gg)

2009–2010

2009–2010

2009–2010

2009–2010

1. Electricity consumption

 

Commercial sector

1737.79

0.018

0.027

1746.34

Metro and tramways

104.01

0.001

0.002

104.52

Othersa

669.64

0.007

0.010

672.93

1(a) Auxiliary consumption and supply losses

268.11

0.003

0.004

269.43

2. Road transportation

1773.78

1.41

0.260

1886.60

3. Navigation

82.22

0.008

0.002

83.06

3(a) Domestic sector

6312.22

0.239

0.064

6337.11

4. Industrial sector

2603.03

0.027

0.002

2615.84

5. Agriculture

 

Soils

_

_

0.035

10.54

6. Livestock management

 

Enteric fermentation

_

0.788

_

19.70

Manure management

_

0.073

0.000004

1.83

7. Waste

 

Municipal solid waste

_

21.41

_

535.33

Domestic waste water

_

12.87

0.213

385.03

Industrial waste water

_

5.75

_

143.84

Total

13550.80

42.61

0.619

14812.10

  1. Note aOthers include electricity consumption in educational institutions, hospitals, municipality, public water works and sewerage systems, pumping stations, street lighting, public utilities, sports complex and construction power

Carbon footprint of Chennai

Sector

CO2 emissions (Gg)

CH4 emissions (Gg)

N2O emissions (Gg)

CO2 equivalent (Gg)

2009–2010

2009–2010

2009–2010

2009–2010

1. Electricity consumption

 

Commercial sector

2845.19

0.033

0.044

2859.07

Othersa

621.15

0.007

0.010

624.18

1(a) Auxiliary consumption and Supply losses

373.78

0.004

0.006

375.61

2. Road transportation

3965.11

6.32

0.192

4180.28

3. Navigation

126.09

0.012

0.003

127.37

3(a) Domestic sector

8584.11

0.343

0.083

8617.29

4. Industrial sector

4452.26

0.059

0.062

4472.35

5. Agriculture

 

Soils

_

_

0.013

3.73

6. Livestock management

 

Enteric fermentation

_

0.304

_

7.61

Manure management

_

0.022

0.000002

0.55

7. Waste

 

Municipal solid waste

_

17.13

_

428.27

Domestic waste water

_

13.17

0.218

394.24

Total

20967.69

37.41

0.629

22090.55

  1. Note aothers include electricity consumption in public lighting and water supply, advertisements, religious, and railway traction

Carbon footprint of greater Bangalore

Sector

CO2 emissions (Gg)

CH4 emissions (Gg)

N2O emissions (Gg)

CO2 equivalent (Gg)

2009–2010

2009–2010

2009–2010

2009–2010

1. Electricity consumption

 

Commercial sector

2444.92

0.029

0.037

2456.80

Othersa

600.54

0.007

0.009

603.46

1(a) Auxiliary consumption and Supply losses

24.76

0.001

0.0002

24.85

2. Road transportation

8288.55

7.65

0.430

8608.00

3. Domestic sector

4256.22

0.170

0.045

4273.81

4. Industrial sector

2425.28

0.029

0.037

2437.03

5. Agriculture

 

Paddy cultivation

_

0.204

_

5.10

Soils

_

_

0.382

113.86

6. Livestock management

 

Enteric fermentation

_

5.17

_

129.36

Manure management

_

0.411

0.000047

10.30

7. Waste

 

Municipal solid waste

_

14.99

_

374.73

Domestic waste water

_

25.37

0.419

759.29

Total

18040.29

54.04

1.36

19796.60

  1. Note aOthers include electricity consumption in irrigation and agriculture, street lighting, water works, and Railways

Carbon footprint of Hyderabad

Sector

CO2 emissions (Gg)

CH4 emissions (Gg)

N2O emissions (Gg)

CO2 equivalent (Gg)

2009–2010

2009–2010

2009–2010

2009–2010

1. Electricity consumption

 

Commercial sector

866.23

0.013

0.013

870.40

Othersa

164.95

0.002

0.002

165.74

2. Road Transportation

 

Vehicles using fuels other than CNG

7488.51

6.60

0.452

7788.02

CNG vehicles

18.64

0.066

0.004

21.55

3. Domestic sector

2331.35

0.055

0.030

2341.81

4. Industrial sector

1555.82

0.024

0.023

1563.14

5. Agriculture

 

Soils

_

_

0.062

18.48

6. Livestock management

 

Enteric fermentation

_

1.68

_

41.98

Manure management

_

0.122

0.00001

3.05

7. Waste

 

Municipal solid waste

_

16.27

_

406.85

Domestic waste water

_

17.16

0.284

513.56

Total

12425.50

41.99

0.870

13734.59

  1. Note aOthers include electricity consumption in public lighting, general purpose, temporary and colony lighting

Carbon footprint of Ahmedabad

Sector

CO2 emissions (Gg)

CH4 emissions (Gg)

N2O emissions (Gg)

CO2 equivalent (Gg)

2009–2010

2009–2010

2009–2010

2009–2010

1. Electricity consumption

 

Commercial sector

884.52

0.015

0.013

888.73

Othersa

187.20

0.003

0.003

188.09

1(a) Auxiliary consumption

390.93

0.004

0.006

392.85

2. Road Transportation

2151.93

3.46

0.118

2273.72

3. Domestic sector

2532.60

0.059

0.033

2544.03

4. Industrial sector

2034.67

0.034

0.030

2044.35

5. Agriculture

 

Soils

_

_

0.128

38.03

6. Livestock management

 

Enteric fermentation

_

3.75

_

93.77

Manure management

_

0.266

0.00003

6.66

7. Waste

 

Municipal solid waste

_

8.80

_

219.89

Domestic waste water

_

14.51

0.240

434.34

Total

8181.85

30.91

0.57

9124.45

  1. Note aOthers include electricity consumption in water pumping, drainage pumping stations, lighting and temporary supply

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Ramachandra, T.V., Sreejith, K., Bharath, H.A. (2014). Sector-Wise Assessment of Carbon Footprint Across Major Cities in India. In: Muthu, S. (eds) Assessment of Carbon Footprint in Different Industrial Sectors, Volume 2. EcoProduction. Springer, Singapore. https://doi.org/10.1007/978-981-4585-75-0_8

Download citation

Publish with us

Policies and ethics