Effective Hand Gesture Classification Approaches

Chapter
Part of the Cognitive Science and Technology book series (CSAT)

Abstract

Hand gestures recognition goals can only be fulfilled when gesture isolation is coupled with an effective feature extraction followed by highly efficient classification. In the context of machine vision, feature extraction and classification can be jointly called pattern recognition in which, previous known patterns are matched with a query gesture.

Keywords

Distance metrics Euclidean distance Manhattan distance Chebyshev distance Mnkowski distance Mahalanobis distance Linear classification NonLinear classification Fisher’s discriminant Multiclass classification Multiclass perceptron Linear support vector machines Nonlinear support vector machines Nearest neighbor classification K-means nearest neighbor classification Multilayer neural networks Learning paradigms Supervised learning Unsupervised learning Reinforcement learning Neural computing Hidden Markov model 

References

  1. 1.
    Chase, L.D.: Euclidean Distance (2008) http://www.warnercnr.colostate.edu/~ldchase/Melinda's%20Final%20writeup.doc. Accessed Oct. 12, 2013
  2. 2.
    Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. Quantitative biology quantitative methods (2012)Google Scholar
  3. 3.
    Cantrell, C.D.: Modern Mathematical Methods for Physicists and Engineers. Cambridge University Press (2000)Google Scholar
  4. 4.
    Abello, J.M., Pardalos, P.M., Resende, M.G.C.: Handbook of Massive Data Sets. Springer (2002)Google Scholar
  5. 5.
    Tax, D.M.J., Duin, R., De Ridder, D.: Classification, Parameter Estimation and State Estimation: An Engineering Approach Using MATLAB. John Wiley and Sons (2004)Google Scholar
  6. 6.
    Mahalanobis, P.C.: On the generalised distance in statistics. Proc. Natl. Inst. Sci. India 2(1), 49–55 (1936)MATHMathSciNetGoogle Scholar
  7. 7.
    Li, T., Zhu, S., Ogihara, M.: Using discriminant analysis for multi-class classification: an experimental investigation. Knowl. Inf. Syst. 10(4): 453–472 (2013)Google Scholar
  8. 8.
    Li, T., Zhu, S., Ogihara, M.: Using discriminant analysis for multi-class classification: an experimental investigation. Knowl. Inf. Syst. 10(4), 453–472 (2006)Google Scholar
  9. 9.
    Su, Y., Shan, S., Cao, B., Chen, X., Gao, W.: Multiple fisher classifiers combination for face recognition based on grouping AdaBoosted Gabor features. Proceedings of the British Machine Vision Conference (2005)Google Scholar
  10. 10.
    Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)CrossRefGoogle Scholar
  11. 11.
    McLachlan, G.J.: Discriminant Analysis and Statistical Pattern Recognition. Wiley Interscience (2004)Google Scholar
  12. 12.
    Hendricks, D.: Analyzing Quantitative Data: An Introduction for Social Researchers, pp. 288–289 (2011)Google Scholar
  13. 13.
    Martinez, A.M., Kak, A.C.: PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 228–233 (2001)CrossRefGoogle Scholar
  14. 14.
    Gupta, S., Jaafar, J., Ahmad, W.F.W.: Static hand gesture recognition using local gabor filter, international symposium on robotics and intelligent Sensors 2012. Procedia Eng. 41, 827–832 (2012)Google Scholar
  15. 15.
    Khan, A., Farooq, H.: Principal component analysis-linear discriminant analysis feature extractor for pattern recognition. IJCSI Int. J. Comput. Sci. 8(6), p276 (2011)Google Scholar
  16. 16.
    Suhas, S., Ajay, K., Khanale, P.: Face recognition using principal component analysis and linear discriminant analysis on holistic approach in facial images database. IOSR J. Eng. 2, 15–23 (2012)CrossRefGoogle Scholar
  17. 17.
    Balakrishnama, S., Ganapathiraju, A.: Linear discriminant analysis- a brief tutorial. Institute for Signal and Information Processing http://www.music.mcgill.ca/~ich/classes/mumt611/classifiers/lda_theory.pdf. Accessed Sept. 12, 2013
  18. 18.
    Khanale, P.B.: Face recognition against variation in pose and background. IEEE International Conference on Electro/Information Technology (2011)Google Scholar
  19. 19.
    Satonkar S.S., Kurhe A.B., Khanale P.B.: Face recognition methods & its applications. J Emerg. Technol. Appl. Eng., Technol. Sci. (IJ-ETA-ETS) 4(2), 294–297 (2011)Google Scholar
  20. 20.
    Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis. Prentice Hall (1998)Google Scholar
  21. 21.
    Yu, H., Yang, J.: A direct LDA algorithm for high-dimensional data—with application to face recognition. Pattern Recognit. 34(10), 2067–2069 (2001)CrossRefMATHGoogle Scholar
  22. 22.
    Rosenblatt, F.: The perceptron–a perceiving and recognizing automaton. Report 85–460-1, Cornell Aeronautical Laboratory (1957)Google Scholar
  23. 23.
    Liou, D.-R., Liou, J.-W., Liou, C.-Y.: Learning Behaviors of Perceptron. iConcept Press (2013)Google Scholar
  24. 24.
    Mahesh P.: Multiclass approaches for support vector machine based land cover classification. CORR 2008 (2008)Google Scholar
  25. 25.
    Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag, New York (1995)CrossRefMATHGoogle Scholar
  26. 26.
    Chen, Y.T., Tseng, K.T.: Multiple-angle hand gesture recognition by fusing SVM classifiers, IEEE conference on Automation Science and Engineering, Scottsdale, AZ, USA, pp. 527–530 (2007)Google Scholar
  27. 27.
    Huang, D-Y., Hu, W-C., Chang, S-H.: Vision-based hand gesture recognition using PCA + Gabor filters and SVM. Fifth international conference on intelligent information hiding and multimedia signal processing (2009)Google Scholar
  28. 28.
    Bonansea, L.: 3D Hand gesture recognition using a ZCam and an SVM-SMO classifier. Graduate Theses and Dissertations Graduate College, Iowa State University (2009)Google Scholar
  29. 29.
    Liu, Y., Gan, Z., Sun, Y.: Static Hand Gesture Recognition and its Application based on Support Vector Machines, pp. 517–521 (2008)Google Scholar
  30. 30.
    Chen, Y-T., Tseng, K-T.: Multiple-angle Hand Gesture Recognition by Fusing SVM Classifiers, pp. 527–530 (2007)Google Scholar
  31. 31.
    Bonansea, L.: Demonstration video of the 3D gesture recognition system using Zcam and SVM. http://www.youtube.com/watch?v=VsM0a_3I1_Q (2009)
  32. 32.
    Ye, J., Yao, H., Jiang, F.: Based on HMM and SVM multilayer architecture classifier for Chinese sign language recognition with large vocabulary, pp. 377–380 (2004)Google Scholar
  33. 33.
    Joachims, T.: Text Categorization with Support Vector Machines: Learning with Many Relevant Features (1998) http://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf. Accessed April 18, 2013
  34. 34.
    Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J Mach. Learn. Res. 2001, 45–66 (2001)Google Scholar
  35. 35.
    Sassano, M.: Virtual Examples for Text Classification with Support Vector Machines. Fujitsu Laboratories Ltd (2003)Google Scholar
  36. 36.
    Basu, A., Watters, C., Shepherd, M.: Support vector machines for text categorization. Proceedings of the 36th Hawaii International Conference on System Sciences (2003)Google Scholar
  37. 37.
    Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. In Proceedings of the Seventeenth International Conference on Machine Learning (ICML-00), pp. 287–295 (1998)Google Scholar
  38. 38.
    Cortes, C., Vapnik, V. N.: Support-Vector Networks, Machine Learning, p. 20 (1995)Google Scholar
  39. 39.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B. P.: Support Vector Machines. Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York (2007)Google Scholar
  40. 40.
    Aizerman, M.A., Braverman, E.M., Rozonoer, L.I.: Theoretical foundations of the potential function method in pattern recognition learning. Autom. Remote Control. 25, 821–837 (1964)MathSciNetGoogle Scholar
  41. 41.
    Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Haussler, D (ed.) 5th Annual ACM Workshop on COLT, pp. 144–152 (1992)Google Scholar
  42. 42.
    Meyer, D., Leisch, F., Hornik, K.: The support vector machine under test, Neurocomputing 55(1–2), 169–186 (2003)CrossRefGoogle Scholar
  43. 43.
    Hsu, C-W, Chang, C-C., Lin, C-J.: A Practical Guide to Support Vector Classification (Technical report). Department of Computer Science and Information Engineering, National Taiwan University (2003)Google Scholar
  44. 44.
    Duan, K-B., Keerthi, S. S.: Which is the best multiclass SVM method? An empirical study. Proceedings of the Sixth International Workshop on Multiple Classifier Systems. Lecture Notes in Computer Science vol. 3541, p. 278 (2005)Google Scholar
  45. 45.
    Hsu, C-W., Lin, C-J.: A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks (2002)Google Scholar
  46. 46.
    Platt, J., Cristiamanini, N., Shawe-Taylor, J.: Large margin DAGs for multiclass classification. In: Solla, S.A., Leen, T.K., Müller, K-R. (eds.) Advances in Neural Information Processing Systems, pp. 547–553. MIT Press (2000)Google Scholar
  47. 47.
    Dietterich, T.G., Bakiri, G.B.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2(2), 263–286 (1995)MATHGoogle Scholar
  48. 48.
    Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass Kernel-based vector machines. J. Mach. Learn. Res. 2, 265–292 (2001)Google Scholar
  49. 49.
    Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines. Computing Science and Statistics, p. 33 (2001)Google Scholar
  50. 50.
    Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines, theory, and application to the classification of microarray data and satellite radiance data. J. Am. Stat. Assoc. 99(465), 67–81 (2004)CrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    Joachims, T.: Transductive inference for text classification using support vector machines. Proceedings of the 1999 International Conference on Machine Learning (ICML 1999), pp. 200–209 (1999)Google Scholar
  52. 52.
    Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A.J., Vapnik, V.N.: Support vector regression machines. In Advances in Neural Information Processing Systems 9, NIPS 1996, pp. 155–161 (1997)Google Scholar
  53. 53.
    Suykens, J.A.K., Vandewalle, J.P.L.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)MathSciNetGoogle Scholar
  54. 54.
    Ferris, M. C. and Munson, T. S.: Interior-point methods for massive support vector machines. SIAM J Optim. 13(3), 783–804 (2002)CrossRefMathSciNetGoogle Scholar
  55. 55.
    Knerr, S., Personnaz, L., Dreyfus, G.: Single-layer learning revisited: a stepwise procedure for building and training neural network. Neurocomputing: Algorithms, Architectures and Applications, NATO ASI. Springer-Verlag, Berlin (1990)Google Scholar
  56. 56.
    Hsu, C.-W., Lin, C.-J.: A comparison of methods for multi-class support vector machines, IEEE Trans. Neural Netw. 13, 415–425 (2002)CrossRefGoogle Scholar
  57. 57.
    JAMES, G.: Majority vote classifiers: Theory and Applications. Ph. D. Thesis, Department of Statistics, Stanford University, Stanford, CA (1998)Google Scholar
  58. 58.
    Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines Tech. Rep. 1043, Department of Statistics, University of Wisconsin, Madison, (2001)Google Scholar
  59. 59.
    Schölkopf, B., Smola, A. J.: Learning with Kernels—Support Vector Machines, Regularization, Optimization and Beyond. The MIT Press, Cambridge (2002)Google Scholar
  60. 60.
    Weston, J., Watkins, C.: Multi-class Support Vector Machines. Royal Holloway, University of London, U. K., Technical Report CSD-TR-98–04 (1998)Google Scholar
  61. 61.
    Piyush, R.: Kernel Methods and Nonlinear Classification CS5350/6350: Machine Learning (2011)Google Scholar
  62. 62.
    Berwick, R.: An Idiot’s guide to Support vector machines (SVMs) http://www.web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf‎. Accessed Oct. 15, 2013
  63. 63.
    Scribe, M.I.J., Thibaux, R.: The kernel trick. Advanced Topics in Learning & Decision Making (2004) http://www.cs.berkeley.edu/~jordan/courses/281B-spring04/lectures/lec3.pdf. Accessed April 18, 2013
  64. 64.
    Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T., Müller, K.-R.: Engineering support vector machine kernels that recognize translation initiation sites. BioInformatics 16(9), 799–807 (2000)CrossRefGoogle Scholar
  65. 65.
    Blankertz, B., Curio, G., Müller, K-R.: Classifying single trial EEG: towards brain computer interfacing. In: Diettrich, T.G., Becker, S., Ghahramani, Z., (eds.) Advances in Neural Information Processing Systems, vol. 14, pp. 157–164 (2002)Google Scholar
  66. 66.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press (1995)Google Scholar
  67. 67.
    Moody, J., Darken, C.: Fast learning in networks of locally-tuned processing units. Neural Comput. 1(2), 281–294 (1998)CrossRefGoogle Scholar
  68. 68.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comp. Syst. Sci. 55(1), 119–139 (1997)CrossRefMATHMathSciNetGoogle Scholar
  69. 69.
    Rätsch, G., Mika, S., Schölkopf, B., Müller, K.-R.: Constructing boosting algorithms from SVMs: an application to one-class classification. IEEE Patt. Anal. Mach. Intell. (IEEE PAMI) 24(9), 1184–1199 (2002)CrossRefGoogle Scholar
  70. 70.
    Girosi, F., Jones, M., Poggio, T.: Priors, stabilizers and basis functions: from regularization to radial, tensor and additive splines. Technical Report A.I. Memo No. 1430, Massachusetts Institute of Technology (1993)Google Scholar
  71. 71.
    Smola, A.J., Schölkopf, B., Müller, K.-R.: The connection between regularization operators and support vector kernels. Neural Netw. 11, 637–649 (1998)CrossRefGoogle Scholar
  72. 72.
    Girosi, F.: An equivalence between sparse approximation and support vector machines. Neural Comput. 10, 1455–1480 (1998)CrossRefGoogle Scholar
  73. 73.
    Haussler, D.: Convolution kernels on discrete structures. Technical Report UCSC-CRL-99–10, UC Santa Cruz (1999)Google Scholar
  74. 74.
    Watkins, C.: Dynamic alignment kernels. In: Smola, A.J., Bartlett, P.L., Schölkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers, pp. 39–50 (2000)Google Scholar
  75. 75.
    Schölkopf, B.: The kernel trick for distances. In: Leen, T.K., Diettrich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems 13. MIT Press (2001)Google Scholar
  76. 76.
    Osuna, E., Freund, R., Girosi, F.: Training support vector machines: an application to face detection. In Proceedings CVPR’97 (1997)Google Scholar
  77. 77.
    Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds) Advances in Kernel Methods—Support Vector Learning, pp. 185–208 (1999)Google Scholar
  78. 78.
    Ralaivola, L., d’Alché Buc, F.: Incremental support vector machine learning: a local approach. Lect. Notes Comput. Sci. 2130, 322–329 (2001)CrossRefGoogle Scholar
  79. 79.
    Schölkopf, B., Burges, C.J.C., Vapnik, V.N.: Extracting support data for a given task. In: Fayyad, U.M., Uthurusamy, R. (eds.) Proceedings, First International Conference on Knowledge Discovery & Data Mining (1995)Google Scholar
  80. 80.
    Schölkopf, B., Smola, A., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12, 1207–1245 (2000)CrossRefGoogle Scholar
  81. 81.
    Schölkopf, B., Smola, A.J: Learning with Kernels. MIT Press, Cambridge (2002)Google Scholar
  82. 82.
    Schölkopf, B., Smola, A.J., Müller, K.-R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299–1319 (1998)CrossRefGoogle Scholar
  83. 83.
    Simard, P.Y., LeCun, Y.A., Denker, J.S., Victorri, B.: Transformation invariance in pattern recognition—tangent distance and tangent propagation. In: Orr, G., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade, LNCS 1524, pp. 239–274 (1998)Google Scholar
  84. 84.
    Afrin, M.H.RH.: Hand gesture recognition using multiclass support vector machine. Int. J. Comput. Appl. 74(1), 39–43 (2013)Google Scholar
  85. 85.
    Chen, Y-T., Tseng, K-T.: Multiple-angle hand gesture recognition by fusing SVM classifiers. Proceedings of the 3rd Annual IEEE Conference on Automation Science and Engineering, pp. 527–530 (2007)Google Scholar
  86. 86.
    Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)MathSciNetGoogle Scholar
  87. 87.
    Coomans, D., Massart, D.L.: Alternative k-nearest neighbor rules in supervised pattern recognition: Part 1. K-Nearest neighbor classification by using alternative voting rules. Anal. Chimi. Acta 136, 15–27 (1982)CrossRefGoogle Scholar
  88. 88.
    Bremner D., Demaine E., Erickson J., Iacono J., Langerman S., Morin P., Toussaint G.: Output-sensitive algorithms for computing nearest-neighbor decision boundaries. Discret. Comput. Geom. 33(4), 593–604 (2005)CrossRefMATHMathSciNetGoogle Scholar
  89. 89.
  90. 90.
    Pujan, Z., M¨uller, T., Foster, M.E., Knoll, A.: A Na¨ıve Bayes Classifier with Distance Weighting for Hand-Gesture Recognition. CSICC 2008, CCIS 6, 308–315 (2008)Google Scholar
  91. 91.
    Pujan, Z., M¨uller, T., Foster, M.E., Knoll, A.: Using a Naïve Bayes classifier based on k-nearest neighbors with distance weighting for static hand-gesture recognition in a human-robot dialog system. Adv. Comput. Sci. Eng. 6(1–8), 308–315 (2008)Google Scholar
  92. 92.
    Vafadar, M., Behrad, A.: Human hand gesture recognition using Spatio-temporal volumes for human-computer Interaction. International Symposium on Telecommunications, pp. 713–718 (2008)Google Scholar
  93. 93.
    Kollorz, E., Penne, J., Hornegger, J., Barke, A.: Gesture recognition with a time-of-flight camera. Int. J. Intell. Syst. Technol. Appl. 5–¾, 334–343 (2008)Google Scholar
  94. 94.
  95. 95.
    Haykin, S.: Neural Network—a Comprehensive Foundation; a Computational Approach to Learning and Machine Intelligence, Macmillan (1994)Google Scholar
  96. 96.
    Zurada, J.M.: Introduction to Artificial Neural Networks System. Jaico Publishing House (1992)Google Scholar
  97. 97.
    Freeman: Artificial Neural Network Algorithm. Applications and Programming, Comp and Neural Systems Series, Addison-Wesley Pub (Sd) (1990)Google Scholar
  98. 98.
    Kulkarni, A.: Artificial Neural Network for Image Understanding. Reinhold, New York (1994)Google Scholar
  99. 99.
    Anderson, J.: An Introduction to Neural Network. A Bradford Book (1995)Google Scholar
  100. 100.
    Ranjan, A.: A New Approach for Blind Source Separation of Convolutive Sources (2008)Google Scholar
  101. 101.
    Carpenter, G.A., Grossberg, S.: The ART of adaptive pattern recognition by a self-organizing neural network. Computer 21, 77–88 (1998)CrossRefGoogle Scholar
  102. 102.
    Hinton, G., Sejnowski, T.J. (ed.): Unsupervised Learning: Foundations of Neural Computation, MIT Press (1999)Google Scholar
  103. 103.
    Duda, R.O., Hart, P.E., Stork, D.G.: Unsupervised Learning and Clustering, Chapter 10 in Pattern classification, 2nd edn. Wiley, New York, p. 571 (2001)Google Scholar
  104. 104.
    Ghahramani, Z.: Unsupervised Learning (2004) http://mlg.eng.cam.ac.uk/zoubin/papers/ul.pdf. Accessed April 18, 2013
  105. 105.
    Williams, R.J.: A class of gradient-estimating algorithms for reinforcement learning in neural networks. Proceedings of the IEEE First International Conference on Neural Networks (1987)Google Scholar
  106. 106.
    Sutton, R.S.: Learning to Predict by the Method of Temporal Differences. Machine Learning (Springer), vol. 3, pp. 9–44 (1998).Google Scholar
  107. 107.
    Bradtke, S.J., Barto, A.G.: Learning to Predict by the Method of Temporal Differences. Machine Learning (Springer), vol. 22, pp. 33–57 (1996)Google Scholar
  108. 108.
    Bertsekas, D.P., Tsitsiklis, D.: Neuro-Dynamic Programming. Athena Scientific, Nashua (1996)MATHGoogle Scholar
  109. 109.
    Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)Google Scholar
  110. 110.
    Peters, J., Vijayakumar, S., Schaal, S.: Reinforcement learning for humanoid robotics. IEEE-RAS International Conference on Humanoid Robots (2003)Google Scholar
  111. 111.
    Powell, W.: Approximate Dynamic Programming: Solving the Curses Of Dimensionality. Wiley-Interscience (2007)Google Scholar
  112. 112.
    Auer, P., Jaksch, T., Ortner, R.: Near-optimal regret bounds for reinforcement learning. J. Mach. Learn. Res. 11, 1563–1600 (2010)MATHMathSciNetGoogle Scholar
  113. 113.
    Szita, I., Szepesvari, C.: Model-based Reinforcement Learning with Nearly Tight Exploration Complexity Bounds. ICML 2010, pp. 1031–1038 (2008)Google Scholar
  114. 114.
    Bertsekas, D.P.: Approximate Dynamic Programming. Dynamic Programming and Optimal Control II, 3rd edn. (2010)Google Scholar
  115. 115.
    Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming using Function Approximators. Taylor & Francis CRC Press (2010)Google Scholar
  116. 116.
    Tokic, M., Palm, G.: Value-difference based exploration: adaptive control between Epsilon-Greedy and Softmax. KI 2011: advances in Artificial intelligence. Lecture Notes in Computer Science, vol. 7006, pp. 335–346 (2011)Google Scholar
  117. 117.
    Wu, J., Chen, E., Wang, H., Shen, Y., Huang, T., Zeng, Z.: A Novel nonparametric regression ensemble for rainfall forecasting using particle swarm optimization technique coupled with artificial neural network. 6th International Symposium on Neural Networks (2009)Google Scholar
  118. 118.
    De Rigo, D., Castelletti, A., Rizzoli, A.E., Soncini-Sessa, R., Weber, E.: A selective improvement technique for fastening Neuro-Dynamic programming in water resources network management. In: Zítek, P. (ed.) Proceedings of the 16th IFAC World Congress (2005)Google Scholar
  119. 119.
    Ferreira, C.: Designing neural networks using gene expression programming. In: Abraham, A., de Baets, B., Köppen, M., Nickolay, B. (eds.) Applied Soft Computing Technologies: The Challenge of Complexity, pp. 517–536 (2006)CrossRefGoogle Scholar
  120. 120.
    Da, Y., Xiurun, G., Villmann, T.: An improved PSO-based ANN with simulated annealing technique. New Aspects in Neurocomputing: 11th European Symposium on Artificial Neural Networks. Elsevier (2005)Google Scholar
  121. 121.
    Balabin, R.M., Lomakina, E.I.: Neural network approach to quantum-chemistry data: accurate prediction of density functional theory energies. J. Chem. Phys. 131(7), 1–8 (2009)Google Scholar
  122. 122.
    Ganesan, N. Venkatesh, K., Rama M.A.: Application of neural networks in diagnosing cancer disease using demographic data. International Journal of Computer Applications 1(26), 76–85 (2010)Google Scholar
  123. 123.
    Bottaci, L. Drew, P.J., Hartley, J.E., Hadfield, M.B., Farouk, R., Lee, P.W., Macintyre, I.M., Duthie, G.S., Monson, J.R.: Artificial Neural Networks Applied to Outcome Prediction for Colorectal Cancer Patients in Separate Institutions. The Lancet 350(9076), 469–472 (1997)Google Scholar
  124. 124.
    Premaratne, P., Safaei, F., Nguyen, Q.: Moment invariant based control system using hand gestures: book intelligent computing in signal processing and pattern recognition. Book Series Lecture Notes in Control and Information Sciences, vol. 345, pp. 322–333 (2006)Google Scholar
  125. 125.
    Gutta, S., Imam, I.F., Wechsler, H.: Hand gesture recognition using ensembles of radial basis functions (RBF) networks and decision trees. Int. J. Patt. Recognit. Artif. Intell. 11(6) (1997)Google Scholar
  126. 126.
    Murthy, G.R.S., Jadon, R.S.: Hand gesture recognition using neural networks. IEEE 2nd International Advance Computing Conference Artificial Intelligence, pp. 134–138 (2010)Google Scholar
  127. 127.
    Hasan, H., Abdul-Kareem, S.: Static hand gesture recognition using neural networks. Artificial Intelligence Review 41:147–181 (2012)Google Scholar
  128. 128.
    Zheng, X., Koenig, S.: A Project on Gesture Recognition with Neural Networks for Introduction to Artificial intelligence Classes (2010)Google Scholar
  129. 129.
    Min, B-W., Yoon, H-S., Soh, J., Yang, Y-M., Ejima, T.: Hand gesture recognition using hidden Markov models. 1997 IEEE International Conference on Systems, Man, and Cybernetics on Computational Cybernetics and Simulation, vol. 5, pp. 4232–4235 (1997)Google Scholar
  130. 130.
    Yang, L., Xu, Y., Chen, C.S.: Human action learning via hidden Markov model. IEEE Trans. Syst. Man. Cybern. 27(1), 34–44 (1997)CrossRefGoogle Scholar
  131. 131.
    Yang, L., Xu, Y.: Hidden Markov model for gesture recognition.Thesis, The Robotics Institute Carnegie Mellon University (1994)Google Scholar
  132. 132.
    Kadous, W.: Machine learning is a subfield of artificial intelligence. PhD Thesis, University of New South Wales (2002)Google Scholar
  133. 133.
    Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory 13(2), 260–269 (1967)CrossRefMATHGoogle Scholar
  134. 134.
    Rabiner, L.: First Hand: The Hidden Markov Model. IEEE Global History Network. http://www.ieeeghn.org/wiki/index.php/First-Hand:The_Hidden_Markov_Model. Accessed Aug. 24, 2013
  135. 135.
    Yang, Z., Li, Y., Chen, W., Zheng, Y.: Dynamic hand gesture recognition using hidden Markov models. 7th International Conference on Computer Science & Education (ICCSE), pp. 360–365 (2012)Google Scholar
  136. 136.
    Chen, F.S., Fu, C.M., Huang, C.L.: Hand gesture recognition using a real-time tracking method and hidden Markov models. Image Vision Comput. 21(8), 745–758 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2014

Authors and Affiliations

  1. 1.School of Elec., Comp. and Telecom. Eng.The University of WollongongNorth WollongongAustralia

Personalised recommendations