Feature Extraction

Chapter
Part of the Cognitive Science and Technology book series (CSAT)

Abstract

An image is worth 1,000 words. Yet, a machine to describe a picture or a color image is not trivial. Of course, some measurements can easily be estimated such as different colors, their intensities, size and dimensions of certain objects if the object can be specified. Yet, the most difficult aspect is to make the decisions as to what constitute an object. In a scene consisting of hand gesture or gestures and a cluttered background, difficulty lies in interpreting these items. Perhaps, the hand gesture recognition offers some help compared to other problems as skin detection can be used to define a hand as was discussed under Pre-processing in Chap.  3. Yet, even when a hand is detected and isolated, what configuration the hand shows is again a difficult question to address.

Keywords

Fourier descriptors Elliptic Fourier descriptor Modified Fourier descriptor Contour description Curvature-Scale-Space features Karhunen Loeve transform Histograms Zernike moments Hu moment invariants 

References

  1. 1.
    Zahn, C.T., Roskies, R.Z.: Fourier descriptors for plane close curves. IEEE Trans. Comput. C-21, 269–281 (1972)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Granlund, G.H.: Fourier preprocessing for hand print character recognition. IEEE Trans. Comput. C-21, 195–201 (1972)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Betrand, O., Queval, R., Maître, H.: Shape interpolation by Fourier descriptors with application to animation graphics. Signal Process. Chapter 4, 53–58 (1981)CrossRefGoogle Scholar
  4. 4.
    Persoon, E., Fu, K.: Shape discrimination using Fourier descriptors. IEEE Trans. Syst. Man Cybern. 7(3), 170–179 (1977)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Zhang, D., Lu, G.: Shape-based image retrieval using generic Fourier descriptor. Signal Process. Image Commun. 17(10), 825–848 (2002)CrossRefGoogle Scholar
  6. 6.
    Bober, M.: MPEG-7 visual shape descriptors. IEEE Trans. Circuits Syst. Video Technol. 11(6), 716–719 (2001)CrossRefGoogle Scholar
  7. 7.
    Zhang, D., Lu, G: Generic Fourier descriptor for shape-based image retrieval. International Conference on Multimedia and Expo, 425–428 (2002)Google Scholar
  8. 8.
    Lin, C.S., Hwang, C.L.: New forms of shape invariants from elliptic Fourier descriptors. Pattern Recognit. 20(5), 535–545 (1987)CrossRefGoogle Scholar
  9. 9.
    Lin, C.S., Jungthirapanich, C.: Invariants of three-dimensional contours. Pattern Recognit 23(8), 833–842 (1990)CrossRefGoogle Scholar
  10. 10.
    Harding, P.R.G., Ellis, T.J.: Recognizing hand gesture using Fourier descriptors. Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004) 4, (2004)Google Scholar
  11. 11.
    Conseil, S., Bourennane, S., Martin, L.: Comparison of Fourier descriptors and Hu moments for hand posture recognition. European Signal Processing Conference, (2007)Google Scholar
  12. 12.
  13. 13.
    Utsumi, A., Miyasato, T., Kishino, F.: Multi-camera hand pose recognition system using skeleton image. IEEE International Workshop on Robot and Human Communication, 219–224 (1995)Google Scholar
  14. 14.
    Licsár, A., Szirányi, T.: Dynamic training of hand gesture recognition system. Proceedings of the 17th International Conference on Pattern Recognition vol. 4, (2004)Google Scholar
  15. 15.
    Rui, Y., She, A., Huang, T.S.: A modified Fourier descriptor for shape matching in MARS. Image Databases and Multimedia Search, 165–180 (1998)Google Scholar
  16. 16.
    Ng, C.W., Ranganath, S.: Real-time gesture recognition system and application. Image Vis. Comput. 20, 993–1007 (2002)CrossRefGoogle Scholar
  17. 17.
    Chen, F.S., Fu, C.M., Huang, C.L.: Hand gesture recognition using a real-time tracking method and hidden Markov models. Image Vis. Comput. 21, 745–758 (2003)CrossRefGoogle Scholar
  18. 18.
    Malima, A., Ozgur, E., Cetin, M.: A fast algorithm for vision-based hand gesture recognition for robot control. IEEE 14th Signal Processing and Communications Applications, (2006)Google Scholar
  19. 19.
    Hasan, M.M., Mishra, P.K.: HSV brightness factor matching for gesture recognition system. Int. J. Image Process. (IJIP). 4(5), 456–467 (2010)Google Scholar
  20. 20.
    Li, X.: Gesture recognition based on fuzzy C-means clustering algorithm. Department of Computer Science, The University of Tennessee, Knoxville (2003)Google Scholar
  21. 21.
    Wachs, J., Kartoun, U., Stern, H., Edan, Y.: Real-time hand gesture telerobotic system. Proceedings of WAC, Florida (2002)Google Scholar
  22. 22.
    Segen, J., Kumar, S.: Fast and accurate 3d gesture recognition interface. Proceedings of the 14th International Conference on Pattern Recognition, vol. 1, 86 (1998)Google Scholar
  23. 23.
    Chang, C.C., Chen, I.-Y, Huang, Y.-S.: Hand pose recognition using curvature scale space. IEEE International Conference on Pattern Recognition (2002)Google Scholar
  24. 24.
    Mokhtarian, F., Mackworth, A.K.: Scale-based description and recognition of planar curves and two dimensional shapes. IEEE Trans. Pattern Anal. Machine Intell. PAMI-8(1), 34–43 (1986)CrossRefGoogle Scholar
  25. 25.
    Mokhtarian, F., Mackworth, A.K.: A theory of multiscale, curvature-based shape representation for planar curves. IEEE Trans. Pattern Anal. Machine Intell. 14(8), 789–805 (1992)CrossRefGoogle Scholar
  26. 26.
    Singha, J., Das, K.: Hand gesture recognition based on Karhunen–Loeve transform. Mobile & Embedded Technology International Conference 2013, pp. 365–371 (2013)Google Scholar
  27. 27.
    Dalal, D., Triggs, B.: Histograms of oriented gradients for human detection. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2, (2005)Google Scholar
  28. 28.
    Suard, F., Rakotomamonjy, A., Bensrhair, A., Broggi, A.: Pedestrian detection using infrared images and histograms of oriented gradients. IEEE Intelligent Vehicles Symposium, 206–212 (2006)Google Scholar
  29. 29.
    Bineesh, T.R., Simon, S.: Fast pedestrian detection using smart ROI separation and integral image based feature extraction. Int. J. Comput. Sci. Eng. 4(11), 1771–1779 (2012)Google Scholar
  30. 30.
    Zhu, Q., Avidan, S., Yeh, M., Cheng, K.: Fast human detection using a cascade of histograms of oriented gradients. CVPR (2006)Google Scholar
  31. 31.
    Hu, B., Wang, S., Ding, X.: Pedestrian detection based on hybrid features. Second International Symposium on Intelligent Information Technology Application, 321–325 (2008)Google Scholar
  32. 32.
    Shashua, A., Gdalyahu, Y., Hayon, G.: Pedestrian detection for driving assistance systems: Single-frame classification and system level performance. Proceedings of IEEE Intelligent Vehicles Symposium, (2004)Google Scholar
  33. 33.
    Freeman, W., Roth, M.: Orientation histograms for hand gesture recognition. Mitsubishi Research Laboratory Report (1994)Google Scholar
  34. 34.
    Zhou, H., Lin, D.J., Huang, T.S.: Static hand gesture recognition based on local orientation histogram feature distribution model. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW’04) (2004)Google Scholar
  35. 35.
    Messer, T.: Static hand gesture recognition. University of Fribourg, Switzerland, (2009)Google Scholar
  36. 36.
    Misra, A., Okatani, T., Deguchi, K.: Hand gesture recognition using histogram of oriented gradients and partial least squares regression. MVA2011 IAPR Conference on Machine Vision Applications, 479–482 (2011)Google Scholar
  37. 37.
    Freeman, W.T., Roth, M.: Orientation histograms for hand gesture recognition. Intl. Workshop on Automatic Face- and Gesture- Recognition, IEEE Computer Society, Zurich, Switzerland, 296–300 (1995)Google Scholar
  38. 38.
    Lee, H.-J., Chung, J.-H.: Hand gesture recognition using orientation histogram. Proc. IEEE Region 10 Conf. 2, 1355–1358 (1999)Google Scholar
  39. 39.
    Tartter, V.C., Knowlton, K.C.: Perception of sign language from an array of 27 moving spots. Nature 289, 676–678 (1981)CrossRefGoogle Scholar
  40. 40.
    Fukumoto, M., Mase, K., Suenaga, Y.: Real time detection of pointing actions for a glove free interface. Workshop on Machine Vision Applications, Tokyo, (1992)Google Scholar
  41. 41.
    Wold, H.: Partial least squares. In: Kotz S., Johnson, N. (eds.) Encyclopedia of Statistical Sciences, vol. 6, John Wiley: New York, pp. 581–591. (1985)Google Scholar
  42. 42.
    Schwartz, W.R., Kembhavi, A., Harwood, D., Davis, L.S.: Human detection using partial least squares analysis. Computer Vision, 2009 IEEE 12th International Conference on, (2009)Google Scholar
  43. 43.
    Zernike, F.: Beugungstheorie des Schneidenverfahrens und Seiner Verbesserten Form, der Phasenkontrastmethode. Physica 1(8), 689–704 (1934)CrossRefMATHGoogle Scholar
  44. 44.
    Hu, M. K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)CrossRefMATHGoogle Scholar
  45. 45.
    Teague, M. R.: Image analysis via the general theory of moments. Opt. Soc. Am. 70(8), 920–930 (1979)CrossRefMathSciNetGoogle Scholar
  46. 46.
    Khotanzad, A., Hong, Y. H.: Invariant image recognition by zernike moments. IEEE 12(5), 489–497 (1990)Google Scholar
  47. 47.
    Prokop, R.J., Reeve, A.P.: A survey of moment-based techniques for unoccluded object representation and recognition. Survey Cornell University http://www.via.cornell.edu/ece547/text/survey.pdf. Accessed Oct. 29, 2013
  48. 48.
    Zhongliang, Q., Wenjun, W.: Automatic ship classification by superstructure moment invariants and two-stage classifier. ICCS/ISITA ‘92. ‘Communications on the Move’, 544–547 (1992)Google Scholar
  49. 49.
    Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70(8), 920–930 (1980)CrossRefMathSciNetGoogle Scholar
  50. 50.
    Dudani, S.A., Breeding, K.J., McGhee, R.B.: Aircraft identification by moment invariants. IEEE Trans. Comput. C-26(1), 39–46 (1977)CrossRefGoogle Scholar
  51. 51.
    Sluzek, A.: Using moment invariants to recognize and locate partially occluded 2D objects. Pattern Recognit. Lett. 7(4), 253–257 (1988)CrossRefGoogle Scholar
  52. 52.
    Gilmore, J.F., Boyd, W.W.: Building and bridge classification by invariant moments. SPIE 292, pp. 256–263 (1981)Google Scholar
  53. 53.
    Wong, R.Y., Hall, E.L.: Scene matching with invariant moments. Comput. Graphics Image Process. 8, 16–24 (1978)CrossRefGoogle Scholar
  54. 54.
    Smith, F.W., Wright, M.H.: Automatic ship photo interpretation by the method of moments. IEEE Trans. Comput. C-20, 1089–1095 (1971)CrossRefGoogle Scholar
  55. 55.
    Boyce, J.F., Hossack, W.J.: Moment invariants for pattern recognition. Pattern Recognit. Lett. 1(5, 6), 451–456 (1983)CrossRefGoogle Scholar
  56. 56.
    Yin, B.H., Mack, H.: Target classification algorithms for video and FLIR imagery. SPIE 0302, pp. 134–141 (1981)Google Scholar
  57. 57.
    Premaratne, P., Safaei, F., Nguyen, Q.: Moment invariant based control system using hand gestures: Book intelligent computing in signal processing and pattern recognition. Book Series Lect. Notes Control Inf. Sci 345, 322–333 (2006)Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2014

Authors and Affiliations

  1. 1.School of Elec., Comp. and Telecom. Eng.The University of WollongongNorth WollongongAustralia

Personalised recommendations