• Prashan Premaratne
Part of the Cognitive Science and Technology book series (CSAT)


Computer vision is aimed at simulating the human visual system in order to extract useful information for machines to make decisions. A visual camera is usually used for this purpose which detects brightness, colour, texture and dimensions of an object in focus. When a camera captures scenery, it contains both ‘wanted’ as well as ‘unwanted’ information. If the camera is focussed on a person’s hand looking for a possible gesture, then the ‘unwanted’ objects in the scenery would be the background which may contain the person’s body, clothing, other people, pets, walls, windows, curtains or any other equipment. Since the system is developed to respond to gestures, the system would try to extract only the ‘wanted’ information. However, as the system would not have the level of intelligence as a human, it relies on ‘clues’ to extract only the ‘wanted’ objects.


Skin segmentation Morphological filtering Thickening Thinning Skeletonization Active stereo vision Coded structured light De-Bruijin sequence M-ary sequence Speckle pattern Infrared light Kinect Time of Flight (TOF) camera 


  1. 1.
    Abdel-Mottaleb, M., Elgammal, A.: Face detection in complex environments from color lmages. Proceedings of the International Conference on Image Processing (ICIP), 622–626 (1999)Google Scholar
  2. 2.
    Alshebani, Q., Premaratne, P., Vial, P.: An Embedded Door Access Based on Face Recognition System: A Survey. To appear in (ICSPCS), 2013, Australia, (2013)Google Scholar
  3. 3.
    Ahmed, E., Crystal, M., Dunxu H.: Skin Detection-a short Tutorial. Encyclopedia of Biometrics by Springer-Verlag Berlin, Heidelberg, 1218–1224 (2009)Google Scholar
  4. 4.
    Forsyth, D.A., Fleck, M.M.: Identifying nude pictures. Proceeding of Third IEEE Workshop on Applications of Computer Vision, 103–108 (1996)Google Scholar
  5. 5.
    Albiol, A., Torres, L., Delp, E.: Optimum color spaces for skin detection. In: Proceedings of the International Conference on Image Processing (ICIP), 122–124 (2001)Google Scholar
  6. 6.
    Shin, M.C., Chang, K.I., Tsap, L.V.: Does colorspace transformation make any difference on skin detection? WACV ’02: Proceedings of the Sixth IEEE Workshop on Applications of Computer Vision, 275 (2002)Google Scholar
  7. 7.
    Zheng, Q.F., Zhang, M.J., Wang, W.Q.: A hybrid approach to detect adult web images. PCM 2 3332, 609–616 (2004)Google Scholar
  8. 8.
    Lee, Y., Yoo, S.I.: An elliptical boundary model for skin color detection. In: Proceedings of the International Conference on Imaging Science, Systems, and Technology, (2002)Google Scholar
  9. 9.
    Senior, A., Hsu, R.L., Mottaleb, M.A., Jain, A.K.: Face detection in color images. IEEE Trans. PAMI 24(5), 696–706 (2002)CrossRefGoogle Scholar
  10. 10.
    Menser, B., Wien, M.: Segmentation and tracking of facial regions in color image sequences. Proceeding of SPIE Visual Communications and Image Processing, 731–740 (2000)Google Scholar
  11. 11.
    Jones, M.J., Rehg, J.M.: Statistical color models with application to skin detection. In: Proceeding of CVPR’99 1, 274–280 (1999)Google Scholar
  12. 12.
    Beetz, M., Radig, B., Wimmer, M.: A person and context specific approach for skin color classification. 18th International Conference on Pattern Recognition (ICPR 2006), (2006)Google Scholar
  13. 13.
    Soriano, M., et al.: Skin detection in video under changing illumination conditions. 15th International Conference on Pattern Recognition, (2000)Google Scholar
  14. 14.
    Kawato, S., Ohya, J.: Automatic skin-color distribution extraction for face detection and tracking. 5th International Conference on Signal Processing Proceedings (WCCC-ICSP 2000), (2000)Google Scholar
  15. 15.
    Park, J., et al.: Detection of human faces using skin color and eyes, IEEE International Conference on Multimedia and Expo (ICME 2000), (2000)Google Scholar
  16. 16.
    Kovac, J., Peer, P., Solina, F.: 2D versus 3D color space face detection. 4th EURASIP Conference on Video/Image Processing and Multimedia Communications, 449–454 (2003)Google Scholar
  17. 17.
    Gomez, G., Morales, E.F.: Automatic feature construction and a simple rule induction algorithm for skin detection. Proceedings of ICML workshop on Machine Learning in Computer Vision, 31–38 (2002)Google Scholar
  18. 18.
    Gasparini, F., Schettini, R.: Skin Segmentation using Multiple Thresholding. Proceedings of SPIE 6061, 128–135 (2006)Google Scholar
  19. 19.
    Vezhnevets, V., Sazonov, V., Andreeva, A.: A Survey on Pixel-Based Skin Color Detection Techniques, In Proceedings of GRAPHICON-2003, (2003)Google Scholar
  20. 20.
    Zarit, B.D., Super, B.J., Quek, F.K.H.: Comparison of five color models in skin pixel classification. ICCV’99 Int’l Workshop on recognition, analysis and tracking of faces and gestures in Real-Time systems, 58–63 (1999)Google Scholar
  21. 21.
    Hsu, R.-L., Abdel-Motalleb, M., Jain, A. K.: Face detection in color images. IEEE Trans. PAMI 24(5), 696–706 (2002)CrossRefGoogle Scholar
  22. 22.
    Ahlberg, J.: A system for face localization and facial feature extraction. Technical Report no. LiTH-ISY-R-2172, Linkoping University, (1999)Google Scholar
  23. 23.
    Sebastian, P., Yap, V.V., Comley, R.: The effect of colour space on tracking robustness. 3rd IEEE Conference on Industrial Electronics and Applications (ICIEA 2008), 2512–2516 (2008)Google Scholar
  24. 24.
    Tsekeridou, S., Pitas, I.: Facial feature extraction in frontal views using biometric analogies. Proceedings of IX European Signal Processing Conference 1, 315–318 (1998)Google Scholar
  25. 25.
    Garcia, C., Tziritas, G.: Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Transaction on Multimedia. 1, 264–277 (1999)CrossRefGoogle Scholar
  26. 26.
    Poynton, C.A..: Frequently Asked Questions About Colour. In (1995)Google Scholar
  27. 27.
    Skarbek, W., Koschan, A.: Colour image segmentation—a survey. Technical Report, Institute for Technical Informatics, Technical University of Berlin, (1994)Google Scholar
  28. 28.
    Sigal, L., Sclaroff, S., Athitsos, V.: Estimation and prediction of evolving color distributions for skin segmentation under varying illumination. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition 2, 152–159 (2000)Google Scholar
  29. 29.
    Mckenna, S., Gong, S., Raja, Y.: Modelling facial colour and identity with gaussian mixtures. Pattern Recognit 31, 12, 1883–1892 (1998)Google Scholar
  30. 30.
    Jordao, L., Perrone, M., Costeira, J., Santos-Victor, J.: Active face and feature tracking. In Proceedings of the 10th International Conference on Image Analysis and Processing, 572–577 (1999)Google Scholar
  31. 31.
    Fleck, M., Forsyth, D.A., Bregler, C.: Finding nacked people. In Proceedings of the ECCV 2, 592–602 (2002)Google Scholar
  32. 32.
    Brown, D., Craw, I., Lewthwaite, J.: A som based approach to skin detection with application in real time systems. In Proceedings of the British Machine Vision Conference, (2001)Google Scholar
  33. 33.
  34. 34.
    Terrillon, J.-C., Shirazi, M.N., Fukamachi, H., Akamatsu, S.: Comparative performance of different skin chrominance models and chrominance spaces for the automatic detection of human faces in color images. In Proceedings of the International Conference on Face and Gesture Recognition, 54–61 (2000)Google Scholar
  35. 35.
    Poynton, C., Funt, B.: Perceptual uniformity in digital image Representation and display. Color Research and Applications, (2013)Google Scholar
  36. 36.
    Kaur, A., Kranthi, B.V.: Comparison between YCbCr color space and CIELab color space for skin color segmentation. Int. J. Appl. Info. Syst. 3(4), 30–33 (2012)Google Scholar
  37. 37.
    Singh, S.K., Chauhan, D.S., Mayank, V., Singh, R.: A robust skin color based face detection algorithm. Tamkang J. Sci. Engg. 6(4), 227–234 (2003)Google Scholar
  38. 38.
    Khan, R., Khan, Z., Aamir, M., Sattar, S.Q.: Static filtered skin detection. IJCSI International Journal of Computer Science Issues. 9(2), 257–261 (2012)Google Scholar
  39. 39.
    Poudel, R.P.K., Nait-Charif, H., Zhang, J.J., Liu, D.: Region-based skin color detection. VISAPP 1, 301–306 (2012)Google Scholar
  40. 40.
    Hikal, N.H., Kountchev, R.: Skin color segmentation using adaptive PCA and modified elliptic boundary model. ICACSIS. 2011, 407–412 (2011)Google Scholar
  41. 41.
    Chen, Q., Wu, H., Yachida, M.: Face detection by fuzzy pattern matching. In Proceedings of the Fifth International Conference on Computer Vision, 591–597 (1995)Google Scholar
  42. 42.
    Schumeyer, R., Barner, K.: A color-based classifier for region identification in video. Vis. Commun. Image Process. SPIE. 3309, 189–200 (1998)CrossRefGoogle Scholar
  43. 43.
    Birchfield, S.: Elliptical head tracking using intensity gradients and color histograms. In Proceedings of CVPR ’98, 232–237 (1998)Google Scholar
  44. 44.
    Yang, M.H., Ahuja, N.: Detecting human faces in color images. In International Conference on Image Processing 1, 127–130 (1998)Google Scholar
  45. 45.
    Kruppa, H., Bauer, M., Schiele, B.: Skin patch detection in real-world images. In: Van Gool, L. (ed.), Pattern Recognition, Lecture Notes in Computer Science 2449, 109–116 (2002)Google Scholar
  46. 46.
    Chang, F., Ma, Z., Tian, W.: A region-based skin color detection algorithm advances in knowledge discovery and data mining. Lecture Notes in Computer Science 4426, 417–424 (2007)Google Scholar
  47. 47.
    Ren, X., Malik, J.: Learning a classification model for segmentation. In IEEE International Conference on Computer Vision 1, 10–17 (2003)Google Scholar
  48. 48.
    Moore, A.P., Prince, S., Warrell, J., Mohammed, U., Jones, G.: Superpixel lattices. In IEEE Conference on Computer Vision and Pattern Recognition, 1–8 (2008)Google Scholar
  49. 49.
    Soatto, S.: Actionable information in vision. In Proceedings of the International Conference on Computer Vision 25, 17–48 (2009)Google Scholar
  50. 50.
    Fulkerson, B., Vedaldi, A., Soatto, S.: Class segmentation and object localization with superpixel neighborhoods. In Proceedings of International Conference on Computer Vision 5, 670–677 (2009)Google Scholar
  51. 51.
    Brand, J., Mason, J.: A comparative assessment of three approaches to pixellevel human skin-detection. In Proceedings of the International Conference on Pattern Recognition 1, 1056–1059 (2000)Google Scholar
  52. 52.
    Soille, P.: Morphological Image Analysis Principles and Applications, 2nd ed., XVI, 391 (2003)Google Scholar
  53. 53.
  54. 54.
    Smith, S.W.: The Scientist and Engineer’s Guide to Digital Signal Processing, Chap. 25.Google Scholar
  55. 55.
  56. 56.
    Gonzalez, R., Woods, R.: Digital Image Processing, Addison-Wesley Publishing Company, 518–548 (1992)Google Scholar
  57. 57.
    Davies, E.: Machine Vision: Theory, Algorithms and Practicalities, Academic Press, 149–161 (1990)Google Scholar
  58. 58.
    Haralick, R., Shapiro, L.: Computer and Robot Vision 1, Addison-Wesley Publishing Company, Chap. 5, 168–173 (1992)Google Scholar
  59. 59.
    Jain, A.: Fundamentals of Digital Image Processing, Prentice-Hall, Chap. 9. (1989)Google Scholar
  60. 60.
    Vernon, D.: Machine Vision, Prentice-Hall, Chap. 4 (1991)Google Scholar
  61. 61.
    Ionescu, B., Coquin, D.: Dynamic hand gesture recognition using the skeleton of the hand. EURASIP J. Appl. Signal Process. 13, 2101–2109 (2005)CrossRefGoogle Scholar
  62. 62.
    Coquin, D., Bolon, P.: Applications of Baddeley’s distance to dissimilarity measurement between gray scale images. Pattern Recognit. Lett. 22(14), 1483–1502 (2001)CrossRefMATHGoogle Scholar
  63. 63.
    Reddy, K.S., Latha, P.S., Babu, M.R.: Hand Gesture Recognition Using Skeleton of Hand and Distance Based Metric, D.C. Wyld et al. (eds.) ACITY 2011, CCIS, 198, 346–354 (2011)Google Scholar
  64. 64.
    Borgefors, G.: Distance transformations in digital images. Comp. Vis. Graphics Image Process. 34(3), 344–371 (1986)CrossRefGoogle Scholar
  65. 65.
    Chehadeh, Y., Coquin, D., Bolon, H.: A skeletonization algorithm using chamfer distance transformation adapted to rectangular grids. In: Proceedings of 13th IEEE International Conference on Pattern Recognition (ICPR 1996) 2, 131–135 (1996)Google Scholar
  66. 66.
    Hasthorpe, J., Mount, N.: The generation of river channel skeletons from binary images using raster thinning algorithms. School of Geography, University of NottinghamGoogle Scholar
  67. 67.
    Wu, S., Jiang, F., Zhao, D.: Hand Gesture Recognition based on Skeleton of Point Clouds. 2012 IEEE fifth International Conference on Advanced Computational Intelligence (ICACI), 566–569 (2012)Google Scholar
  68. 68.
    Premaratne, P., Ajaz, S., Premaratne, M.: Hand Gesture Tracking and Recognition System Using Lucas-Kanade Algorithm for Control of Consumer Electronics. Neurocomputing Journal, (2012)Google Scholar
  69. 69.
    Premaratne, P., Nguyen, Q.: Consumer electronics control system based on hand gesture moment invariants. IET Comp. Vis. 1(1), 35–41 (2007)CrossRefGoogle Scholar
  70. 70.
    Zou, Z., Premaratne, P., Premaratne, M., Monaragala, R., Bandara, N.: Dynamic hand gesture recognition system using moment invariants. 5th International Conference on Information and Automation for Sustainability, 108–113 (2010)Google Scholar
  71. 71.
    Herath, D.C., Kroos, C., Stevens, C.J., Cavedon, L., Premaratne, P.: Thinking head: Towards human centred robotics. 11th International Conference on Control, Automation, Robotics and Vision (ICARCV), 2042–2047 (2010)Google Scholar
  72. 72.
    Premaratne, P., Ajaz, S., Premaratne, M.: Hand Gesture Tracking and Recognition System for Control of Consumer Electronics. Springer Lecture Notes in Artificial Intelligence (LNAI) 6839, 588–593 (2011)Google Scholar
  73. 73.
    Premaratne, P., Nguyen, Q., Premaratne, M.: Human computer interaction using hand gestures. Adv. Intell. Comput. Theor. Appl. Commun. Comput. Info. Sci. 93, 381–386 (2010)Google Scholar
  74. 74.
    Premaratne, P., Safaei, F., Nguyen, Q.: Moment invariant based control system using hand gestures Intelligent Computing in Signal Processing and Pattern recognition, Book Series Lecture Notes in Control and Information Sciences vol. 345, 322–333 (2006)Google Scholar
  75. 75.
    Premaratne, P., Safaei, F.: Feature based Stereo Correspondence using Moment Invariant. Proceedings of the IEEE International Conference on Information and Automation for Sustainability, 104–108 (2008)Google Scholar
  76. 76.
    McGuire, D., Premaratne, P.: A System for the 3D Reconstruction of the Human Face using the Structured Light Approach. The 5th Workshop on the Internet Telecommunications and Signal Processing, 1–7 (2006)Google Scholar
  77. 77.
    Ding, Y., Ping, X., Hu, M., Wang, D.: Range image segmentation using randomized Hough transform. In Information, Communications and Signal Processing, 2003 and Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint Conference of the Fourth International Conference on 2, 807–811 (2003)Google Scholar
  78. 78.
    Jiang, X., Bunke, H.: Edge Detection in Range Images Based on Scan Line Approximation. Comp. Vis. Image Underst. 73(2), 183–199 (1999)CrossRefGoogle Scholar
  79. 79.
    Besl, P.J., Jain, R.C.: Segmentation through Variable-Order Surface Fitting. IEEE Trans. Pattern Anal. Mach. Intell. 10(2), 167–192 (1988)CrossRefGoogle Scholar
  80. 80.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: An efficient alternative to sift or surf. International Conference on Computer Vision, (2011)Google Scholar
  81. 81.
    Leutenegger, S., Chli, M., Siegwart, R.: Brisk: Binary robust invariant scalable keypoints. In Dimitris N. Metaxas, Long Quan, Alberto Sanfeliu, Luc J. Van Gool (eds.) ICCV, 2548–2555 (2011)Google Scholar
  82. 82.
    Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In European Conference on Computer Vision 1, doi: 10.1007/11744023 34., 430–443 (2006)
  83. 83.
    OpenCV, W.G.: Opencv documentation. (2013)Google Scholar
  84. 84.
    Herrera, D.C., Kannala, J., Heikkil, J.: Joint depth and color camera calibration with distortion correction. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 2058–2064 (2012)CrossRefGoogle Scholar
  85. 85.
    Howard, I., Rogers, B.: Seeing in depth. (2002)Google Scholar
  86. 86.
    Coutant, B.E., Westheimer, J.: Population distribution of stereoscopic ability. Ophthal. Physiol. Optics. 13(1), 3–7 (1993)CrossRefGoogle Scholar
  87. 87.
    Liesbeth, I.N., Mazyn, Lenoir, M., Montagne, G., Geert, J., Savelsbergh, P.: The contribution of stereo vision to one-handed catching. Exp. Brain Res. 157(3), 383–390 (2004)Google Scholar
  88. 88.
    Salas, J., Tomasi, C.: People detection using color and depth images. Pattern Recognition, Lecture Notes in Computer Science 6718, 27–135 (2011)Google Scholar
  89. 89.
    Payeur, P., Desjardins, D.: Structured light stereoscopic imaging with dynamic pseudo-random patterns. Image Analysis and Recognition. Lect. Notes Comput. Sci. 5627, 687–696 (2009)CrossRefGoogle Scholar
  90. 90.
    Desjardins, D., Payeur, P.: Dense stereo range sensing with marching pseudo-random patterns. Fourth Canadian Conference on Computer and Robot Vision (CRV ’07), 216–226 (2007)Google Scholar
  91. 91.
    Grin, P.M., Narasimhan, L.S., Yee, S.R.: Generation of uniquely encoded light patterns for range data acquisition. Pattern Recog. 25(6), 609–616 (1992)CrossRefGoogle Scholar
  92. 92.
    Morita, H., Yajima, K., Sakata, S.: Reconstruction of surfaces of 3D objects by M-array pattern projection method. Second International Conference on Computer Vision, 468–473 (1998)Google Scholar
  93. 93.
    Salvi, J., Pagès, J., Batlle, J.: Pattern codification strategies in structured light systems. Pattern Recognit. 37(4), 827–849 (2004)CrossRefMATHGoogle Scholar
  94. 94.
    van Aardenne-Ehrenfest, T., de Bruijn, N.G.: Circuits and trees in oriented linear graphs. Simon Stevin. 28, 203–217 (1951)MATHMathSciNetGoogle Scholar
  95. 95.
    Han, Y.K., Yang, K.: New M-ary power residue sequence families with low correlation. Proceedings of IEEE International Symposium on Information Theory (ISIT2007), 2616–2620 (2007)Google Scholar
  96. 96.
    Han, Y.K., Yang, K.: New M-ary sequence families with low correlation and large size. IEEE Trans. Inf. Theory 55(4), 1815–1823 (2009)CrossRefMathSciNetGoogle Scholar
  97. 97.
    Kim, Y.-S., Chung, J.-S., No, J.-S.: and Chung, H.: New families of M-ary sequences with low correlation constructed from Sidel’nikov sequences. IEEE Trans. Inf. Theory 54(8), 3768–3774 (2008)CrossRefMATHMathSciNetGoogle Scholar
  98. 98.
    Zhang, L., Cudess, B., Seitz, M.: Rapid Shape Acquisition Using Color Structured Lightand Multi-pass Dynamic Programming. 1st IEEE International Symposium on 3D Data Processing, Visualization, and Transmission, 1–13 (2002)Google Scholar
  99. 99.
    Vuylsteke, P., Oosterlinck, A.: Range image acquisition with a single binary-encoded light pattern. Pattern Analy. Mach. Intell. 12(2), 148–163 (1990)CrossRefGoogle Scholar
  100. 100.
    Carrihill, B., Hummel, R.: Experiments with the intensity ratio depth sensor. Comp. Vis. Graphics Image Process. 32, 337–358 (1985)CrossRefGoogle Scholar
  101. 101.
    Hung, D.: 3d scene modelling by sinusoid encoded illumination. Image Visi. Comp. 11, 251–256 (1993)CrossRefGoogle Scholar
  102. 102.
    Tajima, J., Iwakawa, M.: 3-D data acquisition by rainbow range finder. International Conference on Pattern Recognition, 309–313 (1990)Google Scholar
  103. 103.
    Geng, Z.J.: Rainbow 3-dimensional camera new concept of high-speed 3-dimensional vision systems. Opt. Eng. 35(2), 376–383 (1996)CrossRefGoogle Scholar
  104. 104.
    Wust, C., Capson, D.W.: Surface profile measurement using color fringe projection Mach. Vis. Appl. 4, 193–203 (1991)CrossRefGoogle Scholar
  105. 105.
    Sato, T.: Multispectral pattern projection range finder. Proceedings of the Conference on Three-Dimensional Image Capture and Applications II 3640, SPIE, 28–37 (1999)Google Scholar
  106. 106.
    Morano, R.A., Ozturk, C., Conn, C., Dubin, S., Zietz, S., Nissanov, J.: Structured light using pseudorandom codes. Pattern Anal. Mach. Intell. 20(3), 322–327 (1998)CrossRefGoogle Scholar
  107. 107.
    Sali, E., Avraham, A.: Three-Dimensional Mapping and Imaging. http=:// (2010). Accessed Oct 2010
  108. 108.
    Shpunt, A., Mor, Z.: Non-Uniform Spatial Resource Allocation for Depth Mapping. http=:// (2011). Accessed Sept 2011
  109. 109.
    Zalevsky, Z., Shpunt, A., Maizels, A., Garcia, J.: Method and System for Object Reconstruction. (2007). Accessed April 2007
  110. 110.
  111. 111.
    Katz, S.: Boxing with ZCam. Engineering TV. (2009)Google Scholar
  112. 112.
    Iddan, G.J., Yahav, G.: 3D imaging in the studio. Proceedings of SPIE 4298, (2003)Google Scholar
  113. 113.
    Iddan, G.J., Yahav, G.: 3D imaging in the studio.Three-Dimensional Image Capture and Applications IV, Brian D.C., Joseph H.N., Roy P.P. (eds.), Proceedings of SPIE 4298, 48–55 (2001)Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2014

Authors and Affiliations

  1. 1.School of Elec., Comp. and Telecom. Eng.The University of WollongongNorth WollongongAustralia

Personalised recommendations