Historical Development of Hand Gesture Recognition

Chapter
Part of the Cognitive Science and Technology book series (CSAT)

Abstract

The history of hand gesture recognition for computer control started with the invention of glove-based control interfaces. Researchers realized that gestures inspired by sign language can be used to offer simple commands for a computer interface. This gradually evolved with the development of much accurate accelerometers, infrared cameras and even fibreoptic bend-sensors (optical goniometers). Some of those developments in glove based systems eventually offered the ability to realize computer vision based recognition without any sensors attached to the glove. These are the coloured gloves or gloves that offer unique colours for finger tracking ability that would be discussed here on computer vision based gesture recognition. Over past 25 years, this evolution has resulted in many successful products that offer total wireless connection with least resistance to the wearer and will be discussed in Chap.  7. This chapter discusses the chronological order of some fundamental approaches that significantly contributed to the expansion of the knowledge of hand gesture recognition.

Keywords

Muti stereo camera system Hand skeleton Fingertip detection Self occlusion Tree of hand detection Hand tracking Most discriminating feature Spatio temporal Active data glove Passive data glove 

References

  1. 1.
    Dipietro, L., Sabatini, A.M., Dario, P.: Survey of glove-based systems and their applications. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 38(4), 461–482 (2008)CrossRefGoogle Scholar
  2. 2.
    Zimmerman, T.G.: Optical flex sensor. US Patent 4,542,291 (1982)Google Scholar
  3. 3.
    Zimmerman, T., Lanier, J., Blanchard, C., Bryson, S., Harvill, Y.: A Hand Gesture Interface Device. In: Proceedings of the Human Factors in Computing System and Graphics Interface, pp. 189–192 (1987)Google Scholar
  4. 4.
    LaViola, J.J.: A survey of hand posture and gesture recognition techniques and technology. Providence, RI, Technical Report CS-99-11, Brown University (1999)Google Scholar
  5. 5.
    Eglowstein, H.: Reach out and touch your data. Byte 15(7), 283–290 (1990)Google Scholar
  6. 6.
    Gardner, D.L.: The power glove. Des. News 45, 63–68 (1989)Google Scholar
  7. 7.
    http://www.essentialreality.com. Accessed Sept. 2, 2013
  8. 8.
  9. 9.
  10. 10.
  11. 11.
    http://www.5dt.com/?page_id=34. Accessed Sept. 2, 2013
  12. 12.
  13. 13.
  14. 14.
    Sturman, D.J., Zeltzer, D.: A survey of glove-based input. IEEE Comput. Graph. Appl. 14(1), 30–39 (1994)CrossRefGoogle Scholar
  15. 15.
    Davies, J., Shah, M.: Recognizing hand gestures. ECCV-94 (1994)Google Scholar
  16. 16.
    Iwai, Y., Watanabe, K., Yagi, Y., Yachida, M.: Gesture recognition using Colored Gloves. Proceedings of ICPR ’96, pp. 662–666 (1996)Google Scholar
  17. 17.
    Lamberti, L., Camastra, F.: Real-Time Hand Gesture Recognition using a Color Glove. In: Maino G. and Foresti G.L. (eds.) ICIAP 2011, Part I, Lectures Notes on Computer Science Series (LNCS) 6978, pp. 365–373. (2011)Google Scholar
  18. 18.
    Wang, R.Y., Popović, J.: Real-time hand-tracking with a color glove. ACM Trans. Graphics Proc. ACM SIGGRAPH. 28(3), 63 (2009)Google Scholar
  19. 19.
    Rehg, J.M., Kanade, T.: DigitEyes: Vision-based Human Hand Tracking. Proceedings of European Conference on Computer Vision (1994)Google Scholar
  20. 20.
    Gennery, D.: Visual tracking of known three-dimensional objects. Int. J. Comput. Vision 7(3), 243–270 (1992)CrossRefGoogle Scholar
  21. 21.
    Kang, S.B., Ikeuchi, K.: Grasp recognition using the contact web. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, NC (1992)Google Scholar
  22. 22.
    Darrell, T., Pentland, A.: Space-Time Gestures. In: Looking at People Workshop, Chambery, France pp. 335–340 (1993)Google Scholar
  23. 23.
    Utsumi, A., Miyasato, T., Kishino, F.: Multi-Camera Hand Pose Recognition System Using Skeleton Image. IEEE International Workshop on Robot and Human Communications, pp. 219–224 (1995)Google Scholar
  24. 24.
    Freeman, W.T., Michal, R.: Orientation Histograms For Hand Gesture. International Workshop of Automatic Face and Gesture Recognition (1995)Google Scholar
  25. 25.
    Cui, Y., Swets, D., Weng, J.: Learning-Based Hand Sign Recognition. Proceedings of the International Workshop on Automatic Face and Gesture Recognition, pp. 201–206 (1995)Google Scholar
  26. 26.
    Shimada, N., Shirai, Y., Kuno, Y., Miura, J.: Hand gesture estimation and model refinement using monocular camera-ambiguity limitation by inequality constraints. Proceedings of Third IEEE International Conference on Automatic Face and Gesture Recognition. pp. 268–273 (1998)Google Scholar
  27. 27.
    Segen, J., Kumar, S.: Gesture VR: Vision-based 3D hand interace for spatial interaction. Proceeding MULTIMEDIA ’98, Proceedings of the Sixth ACM International Conference on Multimedia, pp. 455–464 (1998)Google Scholar
  28. 28.
    Utsumi, A., Jun, O.: Multiple-hand-gesture tracking using multiple cameras. IEEE Comput. Soc. Con. Comput. Vis. Pattern Recognit. 1, 473–478 (1999)Google Scholar
  29. 29.
    Chen, F.S., Fu, C.M., Huang, C.L.: Hand gesture recognition using a real-time tracking method and hidden Markov models. Image Vision Comput. 21, 745–758 (2003)Google Scholar
  30. 30.
    Gastaldi, G., Pareschi, A., Sabatini, S., Solari, F., Bisio, G.M.: A man machine communication system based on the Visual Analysis of Dynamic Gestures. IEEE International Conference on Image Processing, pp. 397–400 (2005)Google Scholar
  31. 31.
    Premaratne, P., Safaei, F., Nguyen, Q.: Moment Invariant Based Control System Using Hand Gestures. In: Intelligent Computing in Signal Processing and Pattern recognition. Book Series Lecture Notes in Control and Information Sciences, Huang, D.-S., Li K., Irwin G.W. (eds.) ICIC 2006, LNCIS vol. 345, pp. 322–333. Springer Berlin Heidelberg (2006)Google Scholar
  32. 32.
    Nguyen, D.B., Ejima, T.: A New Approach Dedicated to Hand Gesture Recognition. Proceedings of the 5th International Conference Cognitive Informatics, pp. 62–67 (2006)Google Scholar
  33. 33.
    Binh, N.D., Shuchi, B., Ejima, T.: Real-time Hand Tracking and Gesture Recognition System. Proceedings of International Conference on Graphics, Vision and Image Processing (cVIP-o), pp. 362–368 (2005)Google Scholar
  34. 34.
    Berci, N., Szolgay, P.: Vision based Human Machine Interface via Hand Gestures. 18th European Conference on Circuit Theory and Design, ECCTD, pp. 496–499 (2007)Google Scholar
  35. 35.
    Appenrodt, J., Handrich, S., Al-Hamadi, A., Michaelis, B.: Multi stereo camera data fusion for fingertip detection in gesture recognition systems. International conference of soft computing and pattern recognition (SoCPaR), pp. 35–40 (2010)Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2014

Authors and Affiliations

  1. 1.School of Elec., Comp. and Telecom. Eng.The University of WollongongNorth WollongongAustralia

Personalised recommendations