Computational Intelligence in Smart Grids: Case Studies

  • Mohamed A. Abido
  • El-Sayed M. El-Alfy
  • Muhammad Sheraz
Part of the Studies in Computational Intelligence book series (SCI, volume 540)


This chapter briefly provides an overview of related work on computational intelligence techniques in smart grids. It also reviews two computational intelligence techniques and some of their current applications in solving problems associated with smart grids implementation and deployment. More importantly, two case studies are presented and intensively discussed. These applications include parameter estimation of photovoltaic models and tracking of maximum power point. This chapter also highlights some open research problems and directions for future research work.


Computational intelligence Differential evolution Adaptive neuro-fuzzy inference system Hybrid systems Smart grids Parameter estimation Photovoltaic models Maximum power point tracking 



The authors would like to acknowledge the support provided by King Abdulaziz City for Science and Technology (KACST) through the Science & Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through projects No. 11-ENE1632-04 and 11-INF1658-04 as part of the National Science, Technology and Innovation Plan.


  1. 1.
    European Technology Platform SmartGrids, Strategic Deployment Document for Europe’s Electricity Networks of the Future, Third Report, Accessed April 2010
  2. 2.
    F.B. Beidou, W.G. Morsi, C.P. Diduch, L. Chang, Smart grid: challenges, research directions and possible solutions, in Proceedings of the 2nd IEEE International Symposium on Power Electronics for Distributed Generation Systems (2010), p. 670 Google Scholar
  3. 3.
    F. Li, W. Qiao, H. Sun, H. Wan, J. Wang, Y. Xia, Z. Xu, P. Zhang, Smart transmission grid: vision and framework. IEEE Trans. Smart Grid 1(2), 168–177 (2010)CrossRefGoogle Scholar
  4. 4.
    Y. Wang, D. Ruan, J. Xu, M. Wen, L. Deng, in Computational Intelligence Algorithms Analysis for Smart Grid Cyber Security, eds. by Y. Tan, Y. Shi, K.C. Tan. ICSI 2010, Part II, (LNCS 6146, 2010), p. 77Google Scholar
  5. 5.
    G.K. Venayagamoorthy, Dynamic, stochastic, computational, and scalable technologies for smart grids. IEEE Comput. Intell. Mag. 6(3), 22–35 (2011)CrossRefGoogle Scholar
  6. 6.
    G. Ye, R. Rao, M. Li, A multiobjective resources scheduling approach based on genetic algorithms in grid environment, in Proceedings of the 5th International Conference on Grid and Cooperative Computing Workshops (GCCW ‘06), (2006)Google Scholar
  7. 7.
    F. Xhafa, A. Abraham, Computational models and heuristic methods for grid scheduling problems. Future Gener. Comput. Syst. 26(4), 608–621 (2010)CrossRefGoogle Scholar
  8. 8.
    R.G. Harley, J. Liang Computational intelligence in smart grids, in Proceedings of the IEEE Symposium Series on Computational Intelligence, (2011)Google Scholar
  9. 9.
    F.D. Angelis, M. Boaro, D. Fuselli, S. Squartini, F. Piazza, in A Comparison Between Different Optimization Techniques for Energy Scheduling in Smart Home Environment. Neural Nets and Surroundings, Smart Innovation, vol 19 (Systems and Tech, 2013), pp. 311–320Google Scholar
  10. 10.
    Y. Yare, G.K. Venayagamoorthy, U.O. Aliyu, Optimal generator maintenance scheduling using a modified discrete PSO. IET Proc. Gener. Trans. Distrib. 2(6), 834–846 (2008)CrossRefGoogle Scholar
  11. 11.
    M.A. Abido, Multiobjective evolutionary algorithms for electric power dispatch problem. IEEE Trans. Evol. Comput. 10(3), 315–329 (2006)CrossRefGoogle Scholar
  12. 12.
    M. Hassan, M.A. Abido, Optimal design of microgrids in autonomous and grid-connected modes using particle swarm optimization. IEEE Trans. Power Electron. 26(3), 755–769 (2011)CrossRefGoogle Scholar
  13. 13.
    M.H. Khan, M.A. Abido Optimizing the controller of PV system to enhance the dynamic stability of smart grid network, in Proceedings of the Third International Conference on Intelligent Systems Modeling and Simulation (ISMS 2012), (Kota Kinabalu, 2012), p. 96Google Scholar
  14. 14.
    B. Luitel, G.K. Venayagamoorthy, Wide area monitoring in power systems using cellular neural networks. in Proceedings of the IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG), (2011)Google Scholar
  15. 15.
    Z. Vale, G.K. Venayagamoorthy, J. Ferreira, H. Morais, in Computational intelligence applications for future power systems, eds. by A. Madureira et al. Computational Intelligence for Engineering Systems: Emergent Applications, Intelligent Systems, Control and Automation: Science and Engineering, (Springer, New York, 2011)Google Scholar
  16. 16.
    M. Sheraz, M.A. Abido An efficient MPPT controller using differential evolution and neural network, in Proceedings of the IEEE International Conference on Power and Energy (PECon), (2012), p. 378Google Scholar
  17. 17.
    P.J. Werbos, Computational intelligence for the smart grid-history, challenges, and opportunities. IEEE Comput. Intell. Mag. 6(3), 14–21 (2011)CrossRefGoogle Scholar
  18. 18.
    Z. Jiang, Computational Intelligence Techniques for a Smart Electric Grid of the Future, eds. by W. Yu, H. He,N. Zhang. ISNN 2009, Part I, (LNCS 5551, 2009), p. 1191Google Scholar
  19. 19.
    G.K. Venayagamoorthy, Potentials and promises of computational intelligence for smart grids. IEEE Power and Energy Society General Meeting (2009)Google Scholar
  20. 20.
    M. Carvalho, C. Perez, A. Granados, An adaptive multi-agent-based approach to smart grids control and optimization. Energy Syst. 3, 61–76 (2012)CrossRefGoogle Scholar
  21. 21.
    M. Peters, W. Ketter, M. Saar-Tsechansky, J. Collins, A reinforcement learning approach to autonomous decision-making in smart electricity markets. Mach. Learn. 92, 5–39 (2013)CrossRefMathSciNetGoogle Scholar
  22. 22.
    R. Storn, K. Price, Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    J.S.R. Jang, ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)CrossRefGoogle Scholar
  24. 24.
    J.S.R. Jang, Neuro-fuzzy modeling and control. Proc. IEEE 83(3), 378–406 (1995)CrossRefGoogle Scholar
  25. 25.
    W. Kim, W. Choi, A novel parameter extraction method for the one-diode solar cell model. Sol. Energy 84(6), 1008–1019 (2010)CrossRefGoogle Scholar
  26. 26.
    M.G. Villalva, J.R. Gazoli, E.R. Filho, Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans. Power Electron. 24(5), 1198–1208 (2009)CrossRefGoogle Scholar
  27. 27.
    N. Moldovan, R. Picos, E. Garcia-Moreno, Parameter extraction of a solar cell compact model using genetic algorithms. in Proceedings of the Spanish Conference on Electron Devices (2009), p. 379Google Scholar
  28. 28.
    M. Ye, X. Wang, Y. Xu Parameter extraction of solar cells using particle swarm optimization. J. Appl. Phys. 105(9), 094502–094502-8 (2009)Google Scholar
  29. 29.
    K. Ishaque, Z. Salam, A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition. Renew. Sustain. Energy Rev. 19, 475–488 (2013)CrossRefGoogle Scholar
  30. 30.
    K. Kobayashi, H. Matsuo, Y. Sekine, A novel optimum operating point tracker of the solar cell power supply system. in Proceedings of the 35th IEEE Annual Power Electronics Specialists Conference (2004), p. 2147Google Scholar
  31. 31.
    M. Fortunato, A. Giustiniani, G. Petrone, G. Spagnuolo, M. Vitelli, Maximum power point tracking in a one-cycle-controlled single-stage photovoltaic inverter. IEEE Trans. Industr. Electron. 55(7), 2684–2693 (2008)CrossRefGoogle Scholar
  32. 32.
    B.N. Alajmi, K.H. Ahmed, S.J. Finney, B.W. Williams, Fuzzy-logic-control approach of a modified hill-climbing method for maximum power point in microgrid standalone photovoltaic system. IEEE Trans. Power Electron. 26(4), 1022–1030 (2011)CrossRefGoogle Scholar
  33. 33.
    A.K. Abdelsalam, A.M. Massoud, S. Ahmed, P.N. Enjeti, High-performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids. IEEE Trans. Power Electron. 26(4), 1010–1021 (2011)CrossRefGoogle Scholar
  34. 34.
    F. Liu, S. Duan, F. Liu, B. Liu, Y. Kang, A variable step size INC MPPT method for PV systems. IEEE Trans. Industr. Electron. 55(7), 2622–2628 (2008)CrossRefGoogle Scholar
  35. 35.
    K. Ishaque, Z. Salam, M. Amjad, S. Mekhilef, An improved particle swarm optimization (PSO)–based MPPT for PV with reduced steady-state oscillation. IEEE Trans. Power Electron. 27(8), 3627–3638 (2012)CrossRefGoogle Scholar
  36. 36.
    M. Sheraz, M.A. Abido An efficient fuzzy logic based maximum power point tracking controller for photovoltaic systems. in Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ′13), (Bilbao, 2013)Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2014

Authors and Affiliations

  • Mohamed A. Abido
    • 1
  • El-Sayed M. El-Alfy
    • 2
  • Muhammad Sheraz
    • 1
  1. 1.Electrical Engineering Department, College of EngineeringKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.College of Computer Sciences and EngineeringKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations