Fuzzy Logic-Based Adaptive Decision Support in Autonomous Vehicular Networks

  • Chrysostomos Chrysostomou
  • Constantinos Djouvas
  • Lambros Lambrinos
Part of the Studies in Computational Intelligence book series (SCI, volume 540)


The area of intelligent autonomous vehicles and systems poses new challenges in providing mechanisms for efficient communication and control between vehicles, as well as developing robust, adaptive techniques to support intelligent transportation system applications. In this chapter, we show the need for providing an intelligent controller offering decision support in autonomous vehicular networks in terms of broadcast communication channel access. Specifically, we exploit fuzzy logic control, derived from its reported strength of using linguistic information to control nonlinear systems, to build an adaptive, intelligent controller, based on the traffic density, to aid vehicles in deciding when to access the broadcast communication channel. It is demonstrated, by means of enriched simulative evaluation that the fuzzy logic-based controller offers inbuilt robustness with effective control of the system under dense conditions, in contrast with the conventional—IEEE 802.11p standard—solution we compared against.


Autonomous vehicular networks Fuzzy logic control Decision support Cooperative awareness Broadcast communication channel access 


  1. 1.
    G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin, T. Weil, Vehicular networking: a survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Commun. Surv. Tutorials 13(4), 1–33 (2011)CrossRefGoogle Scholar
  2. 2.
    IEEE Std P1609.1, Trial-use standard for wireless access in vehicular environments (WAVE)—resource manager, (2006) doi: 10.1109/IEEESTD.2006.246485
  3. 3.
    IEEE Std P1609.2, Trial-use standard for wireless access in vehicular environments (WAVE)—security services for applications and management messages (2006), doi:  10.1109/IEEESTD.2006.243731
  4. 4.
    IEEE Std P1609.3, Trial-use standard for wireless access in vehicular environments (WAVE)—networking services (2007), doi:  10.1109/IEEESTD.2007.353212
  5. 5.
    IEEE Std P1609.4, Trial-use standard for wireless access in vehicular environments (WAVE)—multi-channel operation (2006), doi:  10.1109/IEEESTD.2006.254109
  6. 6.
    IEEE Std 802.11p, IEEE standard for information technology-telecommunications and information exchange between systems—local and metropolitan area networks—specific requirements Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications—Amendment 6: Wireless access in vehicular environments 2010,  Doi: 10.1109/IEEESTD.2010.5514475
  7. 7.
    D, Jiang, L. Delgrossi, IEEE 802.11p: towards an international standard for wireless access in vehicular environments. Paper presented at the 67th IEEE vehicular technology conference, VTC Spring 2008, Singapore, pp. 2036–2040, 11–14 May 2008Google Scholar
  8. 8.
    USA ITS Standards advisory, Dedicated Short Range Communications (DSRC).
  9. 9.
    D. Jiang, V. Taliwal, A. Meier, W. Holfelder, R. Herrtwich, Design of 5.9 GHz DSRC-based vehicular safety communication. IEEE Wireless Commun. 13(5), 36–43 (2006)CrossRefGoogle Scholar
  10. 10.
    R.A. Uzcategui, WAVE: a tutorial. IEEE Commun. Mag. 47(5), 126–133 (2009)CrossRefGoogle Scholar
  11. 11.
    A. Senart, M. Bouroche, V. Cahill, S. Weber, Vehicular networks and applications, in Middleware for network eccentric and mobile applications, ed. by B. Garbinato, H. Miranda, L. Rodriques (Springer, Heidelberg, 2009), pp. 369–381CrossRefGoogle Scholar
  12. 12.
    E.M. van Eenennaam, K. Wolterink, G. Karagiannis, G.J. Heijenk, Exploring the solution space of beaconing in VANETs. Paper presented at the 1st IEEE vehicular networking conference (VNC2009), Tokyo, pp. 1–8, 28–30 Oct 2009Google Scholar
  13. 13.
    R. Reinders, M. van Eenennaam, G. Karagiannis, G. Heijenk, Contention window analysis for beaconing in VANETs. Paper presented at the 7th IEEE international wireless communications and mobile computing conference (IWCMC 2011), Istanbul, pp. 1481–1487, 4–8 July 2011Google Scholar
  14. 14.
    S. Eichler, Performance evaluation of the IEEE 802.11pWAVE communication standard. Paper presented at the 66th IEEE international vehicular technology conference (VTC-2007 Fall), Maryland, pp. 2199–2203, 30 Sept–3 Oct 2007Google Scholar
  15. 15.
    Y. Wang, A. Ahmed, B. Krishnamachari, K. Psounis, IEEE 802.11p performance evaluation and protocol enhancement. Paper presented at the IEEE international conference on vehicular electronics and safety, Columbus, Ohio, pp. 317–322, 22–24 Sept 2008Google Scholar
  16. 16.
    K. Bilstrub, E. Uhlemann, E.G. Strom, U. Bilstrup, On the ability of the 802.11p MAC method and STDMA to support real-time vehicle-to-vehicle communication. EURASIP J. Wireless Commun. Network. 2009, 902414 (2009). doi: 10.1155/2009/902414 Google Scholar
  17. 17.
    C. Chrysostomou, C. Djouvas, L. Lambrinos, Applying adaptive, QoS-aware medium access control in priority-based vehicular ad hoc networks. Paper presented at the 16th IEEE symposium on computers and communications (IEEE ISCC 2011), Corfu, pp. 741–747, 28 June–1 July 2011Google Scholar
  18. 18.
    C. Chrysostomou, C. Djouvas, L. Lambrinos, Dynamically adjusting the min-max contention window for providing quality of service in vehicular networks. Paper presented at the 11th annual mediterranean ad hoc networking workshop (Med-Hoc-Net’12), Ayia Napa, pp. 16–23, 19–22 June 2012Google Scholar
  19. 19.
    L.A. Zadeh, Fuzzy Sets. Inf. control 8, 338–353 (1965)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    K. Passino, M. Yurkovich, Fuzzy Control, (Prentice Hall, USA, 1998) ISBN 0-201-18074-XGoogle Scholar
  21. 21.
    L.A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybernetics. 3(1), 28–44 (1973)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    E.H. Mamdani, Applications of fuzzy algorithms for control of simple dynamic plant. Proc. IEE 121(12), 1585–1588 (1974)Google Scholar
  23. 23.
    A. Pitsillides, A. Sekercioglu, Congestion control, in Computational intelligence in telecommunications networks, ed. by W. Pedrycz, A.V. Vasilakos (CRC Press, Boca Raton, 2000), pp. 109–158. ISBN 0-8493-1075-XGoogle Scholar
  24. 24.
    A. Sekercioglu, A. Pitsillides, A. Vasilakos, Computational intelligence in management of ATM networks. J.Soft Comput. 5(4), 257–263 (2001)CrossRefMATHGoogle Scholar
  25. 25.
    B. Azvine, A. Vasilakos, Application of soft computing techniques to the telecommunication domain, ed. by G. Tselentis (ERUDIT Roadmap, 2000), pp. 89–110Google Scholar
  26. 26.
    E. Morales, M. Polycarpou, N. Hemasilpin, J. Bissler, Hierarchical adaptive and supervisory control of continuous venovenous hemofiltration. IEEE Trans. Control Syst. Technol. 9(3), 445–457 (2001)CrossRefGoogle Scholar
  27. 27.
    A. Sekercioglou, A. Pitsillides, G.K. Egan, Study of an adaptive fuzzy controller based on the adaptation of relative rule weights. Paper presented at the 2nd ANZIIS, Brisbane, pp. 204–208, 29 Nov–2 Dec 1994Google Scholar
  28. 28.
    A. Pitsillides, A. Sekercioglou, G. Ramamurthy, Effective control of traffic flow in ATM networks using fuzzy explicit rate marking (FERM). IEEE J. Sel. Areas Commun. 15(2), 209–225 (1997)CrossRefGoogle Scholar
  29. 29.
    C. Douligeris, G. Develekos, A fuzzy logic approach to congestion control in ATM networks. Paper presented at the of IEEE ICC’95, Seattle, pp. 1969–1973, 18–22 June 1995Google Scholar
  30. 30.
    L. Rossides, A. Sekercioglu, S. Kohler, A. Pitsillides, T.G. Phuoc, A. Vassilakos, Fuzzy logic controlled RED: congestion control for TCP/IP diff-serv architecture. Paper presented at the 8th European congress on intelligent techniques and soft computing (ESIT2000), Aachen, pp. 263–269, 14–15 Sept 2000Google Scholar
  31. 31.
    L. Rossides, C. Chrysostomou, A. Pitsillides, A. Sekercioglu, Overview of Fuzzy-RED in Diff-Serv Networks, in Proceedings of Soft-Ware 2002, vol. 2311, Lecture notes in computer science, ed. by D. Bustard, W. Liu, R. Sterritt (Springer, Heidelberg, 2002), pp. 1–13Google Scholar
  32. 32.
    C. Chrysostomou, A. Pitsillides, L. Rossides, M. Polycarpou, A. Sekercioglu, Congestion control in differentiated services networks using Fuzzy-RED. Special issue on control methods for telecommunication networks, IFAC Control Eng. Pract. J. 11(10), 1153–1170 (2003)Google Scholar
  33. 33.
    C. Chrysostomou, A. Pitsillides, A. Sekercioglu, Fuzzy explicit marking: a unified congestion controller for best-effort and diff-serv networks. Elsevier Comput. Netw. J. 53(5), 650–667 (2009)CrossRefMATHGoogle Scholar
  34. 34.
    C. Chrysostomou, Fuzzy logic based AQM congestion control in TCP/IP networks. PhD thesis, University of Cyprus (2006),
  35. 35.
    E.H. Mamdani, S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)CrossRefMATHGoogle Scholar
  36. 36.
    OMNeT++ discrete event-based simulation framework.
  37. 37.
    C. Sommer, R. German, F. Dressler, Bidirectionally coupled network and road traffic simulation for improved IVC analysis. IEEE Trans. Mob. Comput. 10(1), 3–15 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2014

Authors and Affiliations

  • Chrysostomos Chrysostomou
    • 1
  • Constantinos Djouvas
    • 2
  • Lambros Lambrinos
    • 2
  1. 1.Department of Computer Science and EngineeringFrederick UniversityNicosiaCyprus
  2. 2.Department of Communication and Internet StudiesCyprus University of TechnologyLimassolCyprus

Personalised recommendations