Skip to main content

Atomic Vacancy, Nanocavity, and Porous Foams

  • Chapter
  • First Online:
Relaxation of the Chemical Bond

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 108))

  • 2133 Accesses

Abstract

Bonds between undercoordinated atoms in the inner surfaces of nanopores perform the same as those in a bulk surface or the outer surface of a nanosolid. A broken bond not only serves as a center initiating mechanical failure but also provides a site pinning dislocations. Atomic vacancies, point defects, and nanometer-sized pores result in the unusual properties of the specimens—they are of lightweight and high strength yet thermally or chemically less stable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.M.A. Huq, K.L. Goh, Z.R. Zhou, K. Liao, On defect interactions in axially loaded single-walled carbon nanotubes. J. Appl. Phys. 103(5), 054306 (2008)

    Article  ADS  Google Scholar 

  2. C. Kittel, Introduction to Solid State Physics, 8th edn. (Willey, New York, 2005)

    Google Scholar 

  3. Y.A. Chang, L.M. Pike, C.T. Liu, A.R. Bilbrey, D.S. Stone, Correlation of the hardness and vacancy concentration in FeAl. Intermetallics 1(2), 107–115 (1993)

    Article  Google Scholar 

  4. M.S. Miao, W.R.L. Lambrecht, Effects of vacancies and impurities on the relative stability of rocksalt and zincblende structures for MnN. Phys. Rev. B 76(19), 195209 (2007)

    Article  ADS  Google Scholar 

  5. J.M. Yan, X.F. Ma, W. Zhao, H.G. Tang, C.J. Zhu, S.G. Cai, Crystal structure and carbon vacancy hardening of (W0.5Al0.5) C1−x prepared by a solid-state reaction. Chem. Phys. Chem. 6(10), 2099–2103 (2005)

    Article  Google Scholar 

  6. I. Kaplan-Ashiri, S.R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Wiesel, H.D. Wagner, R. Tenne, On the mechanical behavior of WS2 nanotubes under axial tension and compression. Proc. Natl. Acad. Sci. U.S.A. 103(3), 523–528 (2006)

    Article  ADS  Google Scholar 

  7. M. Sammalkorpi, A. Krasheninnikov, A. Kuronen, K. Nordlund, K. Kaski, Mechanical properties of carbon nanotubes with vacancies and related defects. Phys. Rev. B 70(24), 245416 (2004)

    Article  ADS  Google Scholar 

  8. N.M. Pugno, R.S. Ruoff, Quantized fracture mechanics. Phil. Mag. 84(27), 2829–2845 (2004)

    Article  ADS  Google Scholar 

  9. C.Q. Sun, Thermo-mechanical behavior of low-dimensional systems: The local bond average approach. Prog. Mater. Sci. 54(2), 179–307 (2009)

    Article  Google Scholar 

  10. S.H. Jhi, S.G. Louie, M.L. Cohen, J. Ihm, Vacancy hardening and softening in transition metal carbides and nitrides. Phys. Rev. Lett. 86(15), 3348–3351 (2001)

    Article  ADS  Google Scholar 

  11. H. Holleck, Material selection for hard coatings. J. Vac. Sci. Technol. A: Vac. Surf. Films 4(6), 2661–2669 (1986)

    Article  ADS  Google Scholar 

  12. X. Jiang, M. Wang, K. Schmidt, E. Dunlop, J. Haupt, W. Gissler, Elastic-constants and hardness of ion-beam-sputtered TiNx films measured by brillouin-scattering and depth-sensing indentation. J. Appl. Phys. 69(5), 3053–3057 (1991)

    Article  ADS  Google Scholar 

  13. L.E. Toth, Transition Metal Carbides and Nitrides (Academic Press, New York, 1971)

    Google Scholar 

  14. R. Sahara, T. Shishido, A. Nomura, K. Kudou, S. Okada, V. Kumar, K. Nakajima, Y. Kawazoe, Mechanism of the increase in bulk modulus of perovskite ScRh3Bx by vacancies. Phys. Rev. B 73(18), 184102 (2006)

    Article  ADS  Google Scholar 

  15. C.S. Shin, D. Gall, N. Hellgren, J. Patscheider, I. Petrov, J.E. Greene, Vacancy hardening in single-crystal TiNx(001) layers. J. Appl. Phys. 93(10), 6025–6028 (2003)

    Article  ADS  Google Scholar 

  16. V.K. Luk, M.J. Forrestal, D.E. Amos, Dynamic spherical cavity expansion of strain-hardening materials. J. Appl. Mech.-Trans. ASME 58(1), 1–6 (1991)

    Article  ADS  Google Scholar 

  17. G.H. Lu, Q. Wang, F. Liu, The role of vacancy on trapping interstitial O in heavily As-doped Si. Appl. Phys. Lett. 92(21), 211906 (2008)

    Article  ADS  Google Scholar 

  18. J.A. Knapp, D.M. Follstaedt, S.M. Myers, Hardening by bubbles in He-implanted Ni. J. Appl. Phys. 103(1), 013518–013519 (2008)

    Article  ADS  Google Scholar 

  19. C.H.P. Poa, R.G. Lacerda, D.C. Cox, F.C. Marques, S.R.P. Silva, Effects of stress on electron emission from nanostructured carbon materials. J. Vac. Sci. Technol., B 21(4), 1710–1714 (2003)

    Article  Google Scholar 

  20. R.G. Lacerda, M.C. dos Santos, L.R. Tessler, P. Hammer, F. Alvarez, F.C. Marques, Pressure-induced physical changes of noble gases implanted in highly stressed amorphous carbon films. Phys. Rev. B 68(5), 054104 (2003)

    Article  ADS  Google Scholar 

  21. C.H. Poa, R.G. Lacerda, D.C. Cox, S.R.P. Silva, F.C. Marques, Stress-induced electron emission from nanocomposite amorphous carbon thin films. Appl. Phys. Lett. 81(5), 853–855 (2002)

    Article  ADS  Google Scholar 

  22. B.J. Waclawski, J.W. Gadzuk, J.F. Herbst, UV photoemission for rare-gases implanted in Ge. Phys. Rev. Lett. 41(8), 583–586 (1978)

    Article  ADS  Google Scholar 

  23. C. Biswas, A.K. Shukla, S. Banik, S.R. Barman, A. Chakrabarti, Argon nanobubbles in Al(111): A photoemission study. Phys. Rev. Lett. 92(11), 115506 (2004)

    Article  ADS  Google Scholar 

  24. P.H. Citrin, D.R. Hamann, Measurement and calculation of polarization and potential-energy effects on core-electron binding-energies in solids: X-ray photoemission of rare-gases implanted in noble-metals. Phys. Rev. B 10(12), 4948–4963 (1974)

    Article  ADS  Google Scholar 

  25. R.E. Watson, J.F. Herbst, J.W. Wilkins, Core level shifts of rare-gas atoms implanted in noble-metals. Phys. Rev. B 14(1), 18–25 (1976)

    Article  ADS  Google Scholar 

  26. G. Kaindl, T.C. Chiang, D.E. Eastman, F.J. Himpsel, Distance-dependent relaxation shifts of photoemission and auger energies for Xe on Pd(001). Phys. Rev. Lett. 45(22), 1808–1811 (1980)

    Article  ADS  Google Scholar 

  27. R.G. Lacerda, L.R. Tessler, M.C. dos Santos, P. Hammer, F. Alvarez, F.C. Marques, EXAFS study of noble gases implanted in highly stressed amorphous carbon films. J. Non-Cryst. Solids 299, 805–809 (2002)

    Article  ADS  Google Scholar 

  28. J.H. Kim, S.M. Seo, H.H. Lee, Nanovoid nature and compression effects in organic light emitting diode. Appl. Phys. Lett. 90(14), 143521 (2007)

    Article  ADS  Google Scholar 

  29. R.W. Lynch, H.G. Drickame, Effect of high pressure on lattice parameters of diamond graphite and hexagonal boron nitride. J. Chem. Phys. 44(1), 181–184 (1966)

    Article  ADS  Google Scholar 

  30. S. Bhattacharyya, S.V. Subramanyam, Metallic conductivity of amorphous carbon films under high pressure. Appl. Phys. Lett. 71(5), 632–634 (1997)

    Article  ADS  Google Scholar 

  31. K. Umemoto, S. Saito, S. Berber, D. Tomanek, Carbon foam: Spanning the phase space between graphite and diamond. Phys. Rev. B 64(19), 193409 (2001)

    Article  ADS  Google Scholar 

  32. S. Mirabella, E. Bruno, F. Priolo, F. Giannazzo, C. Bongiorno, V. Raineri, E. Napolitani, A. Carnera, Role of surface nanovoids on interstitial trapping in He implanted crystalline Si. Appl. Phys. Lett. 88(19), 191910 (2006)

    Article  ADS  Google Scholar 

  33. R.G. Lacerda, P. Hammer, F. Alvarez, F.C. Marques, Influence of stress on the electron core level energies of noble gases implanted in hard amorphous carbon films. Diam. Relat. Mater. 10(3–7), 956–959 (2001)

    Article  ADS  Google Scholar 

  34. C.S. Dai, D.L. Wang, F. Ding, X.G. Hu, Z.H. Jiang, Review of metal foam electrode material. Rare Metal Mater. Eng. 33(6), 1–5 (2004)

    Google Scholar 

  35. D.C. Dunand, Processing of titanium foams. Adv. Eng. Mater. 6(6), 369–376 (2004)

    Article  Google Scholar 

  36. C. Korner, R.F. Singer, Processing of metal foams: Challenges and opportunities. Adv. Eng. Mater. 2(4), 159–165 (2000)

    Article  Google Scholar 

  37. K.M. Hurysz, J.L. Clark, A.R. Nagel, C.U. Hardwicke, K.J. Lee, J.K. Cochran, T.H. Sanders, Steel and titanium hollow sphere foams, in Porous and Cellular Materials for Structure Applications, ed. by D.S. Schwartz, et al. (Materials Research Society, Warrendale, 1998), pp. 191–203

    Google Scholar 

  38. http://en.wikipedia.org/wiki/Porosity

  39. J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying. Nature 410(6827), 450–453 (2001)

    Article  ADS  Google Scholar 

  40. A.M. Hodge, J. Biener, J.R. Hayes, P.M. Bythrow, C.A. Volkert, A.V. Hamza, Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 55(4), 1343–1349 (2007)

    Article  Google Scholar 

  41. A. Mathur, J. Erlebacher, Size dependence of effective Young’s modulus of nanoporous gold. Appl. Phys. Lett. 90(6), 061910 (2007)

    Article  ADS  Google Scholar 

  42. J.N. Armstrong, S.Z. Hua, H.D. Chopra, Strength of metals at the Fermi length scale. Phys. Status Solidi 9, 99–101 (2012)

    Google Scholar 

  43. J. Biener, A.M. Hodge, J.R. Hayes, C.A. Volkert, L.A. Zepeda-Ruiz, A.V. Hamza, F.F. Abraham, Size effects on the mechanical behavior of nanoporous Au. Nano Lett. 6(10), 2379–2382 (2006)

    Article  ADS  Google Scholar 

  44. J. Biener, A.M. Hodge, A.V. Hamza, L.M. Hsiung, J.H. Satcher, Nanoporous Au: A high yield strength material. J. Appl. Phys. 97(2), 024301 (2005)

    Article  ADS  Google Scholar 

  45. A.M. Hodge, J. Biener, L.L. Hsiung, Y.M. Wang, A.V. Hamza, J.H. Satcher, Monolithic nanocrystalline Au fabricated by the compaction of nanoscale foam. J. Mater. Res. 20(3), 554–557 (2005)

    Article  ADS  Google Scholar 

  46. M. Hakamada, M. Mabuchi, Mechanical strength of nanoporous gold fabricated by dealloying. Scr. Mater. 56(11), 1003–1006 (2007)

    Article  Google Scholar 

  47. C.A. Volkert, E.T. Lilleodden, D. Kramer, J. Weissmuller, Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 89(6), 061920 (2006)

    Article  ADS  Google Scholar 

  48. D. Lehmhus, J. Banhart, Properties of heat-treated aluminium foams. Mater. Sci. Eng. A: Struct. Mater. Prop. Microstruct. Process. 349(1–2), 98–110 (2003)

    Article  Google Scholar 

  49. O. Kraft, D. Saxa, M. Haag, A. Wanner, The effect of temperature and strain rate on the hardness of Al and Al-based foams as measured by nanoindentation. Z. Metallk. 92(9), 1068–1073 (2001)

    Google Scholar 

  50. B. Jiang, Z.J. Wang, N.Q. Zhao, Effect of pore size and relative density on the mechanical properties of open cell aluminum foams. Scr. Mater. 56(2), 169–172 (2007)

    Article  Google Scholar 

  51. S. Ko, D. Lee, S. Jee, H. Park, K. Lee, W. Hwang, Mechanical properties and residual stress in porous anodic alumina structures. Thin Solid Films 515(4), 1932–1937 (2006)

    Article  ADS  Google Scholar 

  52. J.F. de Deus, A.C. Tavares, C.M. Lepienski, L. Akcelrud, Nanomechanical properties of poly(methyl methacrylate-co-9-anthryl methyl methacrylate). Surf. Coat. Technol. 201(6), 3615–3620 (2006)

    Article  Google Scholar 

  53. X.M. Bai, M. Li, Nucleation and melting from nanovoids. Nano Lett. 6(10), 2284–2289 (2006)

    Article  ADS  Google Scholar 

  54. S.H. Jhi, J. Ihm, S.G. Louie, M.L. Cohen, Electronic mechanism of hardness enhancement in transition-metal carbonitrides. Nature 399(6732), 132–134 (1999)

    Article  ADS  Google Scholar 

  55. Z.P. Wang, Q. Jiang, A yield criterion for porous ductile media at high strain rate. J. Appl. Mech.-Trans. ASME 64(3), 503–509 (1997)

    Article  ADS  MATH  Google Scholar 

  56. I. Lubomirsky, Mechanical properties and defect chemistry. Solid State Ion. 177(19–25), 1639–1642 (2006)

    Article  Google Scholar 

  57. L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, 2nd edn. (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  58. P.G. Sanders, J.A. Eastman, J.R. Weertman, Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater. 45(10), 4019–4025 (1997)

    Article  Google Scholar 

  59. J.B. Wachtman (ed.), Mechanical and Thermal Properties of Ceramics (NBS Special Publication, Washington, 1963), p. 139

    Google Scholar 

  60. J.K. Mackenzie, The elastic constants of a solid containing spherical holes. Proc. Phys. Soc. London Sect. B 63(361), 2–11 (1950)

    Article  ADS  MATH  Google Scholar 

  61. R.W. Rice, Use of normalized porosity in models for the porosity dependence of mechanical properties. J. Mater. Sci. 40(4), 983–989 (2005)

    Article  ADS  Google Scholar 

  62. B. Wu, A. Heidelberg, J.J. Boland, Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4(7), 525–529 (2005)

    Article  ADS  Google Scholar 

  63. M.D. Uchic, D.M. Dimiduk, J.N. Florando, W.D. Nix, Sample dimensions influence strength and crystal plasticity. Science 305(5686), 986–989 (2004)

    Article  ADS  Google Scholar 

  64. L.K. Pan, C.Q. Sun, C.M. Li, Estimating the extent of surface oxidation by measuring the porosity dependent dielectrics of oxygenated porous silicon. Appl. Surf. Sci. 240(1–4), 19–23 (2005)

    Article  ADS  Google Scholar 

  65. J.E. Sader, Surface stress induced deflections of cantilever plates with applications to the atomic force microscope: V-shaped plates. J. Appl. Phys. 91(11), 9354–9361 (2002)

    Article  ADS  Google Scholar 

  66. R.C. Cammarata, K. Sieradzki, Effects of surface stress on the elastic-moduli of thin-films and superlattices. Phys. Rev. Lett. 62(17), 2005–2008 (1989)

    Article  ADS  Google Scholar 

  67. F.Q. Yang, J.C.M. Li, Diffusion-induced beam bending in hydrogen sensors. J. Appl. Phys. 93(11), 9304–9309 (2003)

    Article  ADS  Google Scholar 

  68. P. Sharma, S. Ganti, N. Bhate, Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82(4), 535–537 (2003)

    Article  ADS  Google Scholar 

  69. F.Q. Yang, Size-dependent effective modulus of elastic composite materials: Spherical nanocavities at dilute concentrations. J. Appl. Phys. 95(7), 3516–3520 (2004)

    Article  ADS  Google Scholar 

  70. J. Biener, A.M. Hodge, A.V. Hamza, Microscopic failure behavior of nanoporous gold. Appl. Phys. Lett. 87(12), 121908 (2005)

    Article  ADS  Google Scholar 

  71. Y. Ding, C.Q. Sun, Y.C. Zhou, Nanocavity strengthening: Impact of the broken bonds at the negatively curved surfaces. J. Appl. Phys. 103(8), 084317 (2008)

    Article  ADS  Google Scholar 

  72. R. Grantab, V.B. Shenoy, R.S. Ruoff, Anomalous strength characteristics of Tilt Grain boundaries in graphene. Science 330(6006), 946–948 (2010)

    Article  ADS  Google Scholar 

  73. Y.J. Wei, J.T. Wu, H.Q. Yin, X.H. Shi, R.G. Yang, M. Dresselhaus, The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene. Nat. Mater. 11(9), 759–763 (2012)

    Article  ADS  Google Scholar 

  74. C.Q. Sun, Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 35(1), 1–159 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q. (2014). Atomic Vacancy, Nanocavity, and Porous Foams. In: Relaxation of the Chemical Bond. Springer Series in Chemical Physics, vol 108. Springer, Singapore. https://doi.org/10.1007/978-981-4585-21-7_29

Download citation

Publish with us

Policies and ethics