Skip to main content

Liquid and Solid Skins

  • Chapter
  • First Online:
Relaxation of the Chemical Bond

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 108))

  • 2123 Accesses

Abstract

Surface energetics, including the terms of surface energy, surface free energy, surface tension, surface stress, and their correlations, plays the central role in surface and nanosolid sciences. Despite confusions about these terms, the surface energetics is of great importance to a qualitative and sometimes even quantitative understanding of the microscopic and mesoscopic processes at a surface of liquid or solid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Ibach, The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf. Sci. Rep. 29(5–6), 195–263 (1997)

    ADS  Google Scholar 

  2. W. Haiss, Surface stress of clean and adsorbate-covered solids. Rep. Prog. Phys. 64(5), 591–648 (2001)

    ADS  Google Scholar 

  3. R. Berger, E. Delamarche, H.P. Lang, C. Gerber, J.K. Gimzewski, E. Meyer, H.J. Guntherodt, Surface stress in the self-assembly of alkanethiols on gold. Science 276(5321), 2021–2024 (1997)

    Google Scholar 

  4. M.N. Magomedov, The surface energy of nanocrystals. Russ. J. Phys. Chem. 79(5), 711–720 (2005)

    MathSciNet  Google Scholar 

  5. R. Dingreville, J.M. Qu, M. Cherkaoui, Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53(8), 1827–1854 (2005)

    ADS  MATH  MathSciNet  Google Scholar 

  6. W. Vogelsberger, Thermodynamics of homogeneous nucleation under different constraints. Z. Phys. Chemie-Int. J. Res. Phys. Chem. Chem. Phys. 215, 1099–1120 (2001)

    Google Scholar 

  7. M.C. Desjonquères, D. Spanjaard, in Concepts in Surface Physics. Springer Series in Surface, vol. 30 (Springer, Berlin, 1993)

    Google Scholar 

  8. Q. Jiang, H.M. Lu, M. Zhao, Modelling of surface energies of elemental crystals. J. Phys.: Condens. Matter 16(4), 521–530 (2004)

    ADS  Google Scholar 

  9. I. Galanakis, N. Papanikolaou, P.H. Dederichs, Applicability of the broken-bond rule to the surface energy of the fcc metals. Surf. Sci. 511(1–3), 1–12 (2002)

    ADS  Google Scholar 

  10. C.Q. Sun, Surface and nanosolid core-level shift: Impact of atomic coordination-number imperfection. Phys Rev B 69(4), 045105 (2004)

    ADS  Google Scholar 

  11. D. Xie, M.P. Wang, L.F. Cao, A simplified model to calculate the higher surface energy of free-standing nanocrystals. Phys. Status Solidi B-Basic Solid State Phys. 242(8), R76–R78 (2005)

    Google Scholar 

  12. D. Xie, M.P. Wang, W.H. Qi, A simplified model to calculate the surface-to-volume atomic ratio dependent cohesive energy of nanocrystals. J. Phys.-Condens. Matter 16(36), L401–L405 (2004)

    ADS  Google Scholar 

  13. O.L. Alerhand, J.D. Joannopoulos, E.J. Mele, Thermal amplitudes of surface atoms on Si(111) 2 × 1 and Si(001) 2 × 1. Phys. Rev. B 39(17), 12622–12629 (1989)

    ADS  Google Scholar 

  14. C.Q. Sun, L.K. Pan, C.M. Li, S. Li, Size-induced acoustic hardening and optic softening of phonons in InP, CeO2, SnO2, CdS, Ag, and Si nanostructures. Phys. Rev. B 72(13), 134301 (2005)

    ADS  Google Scholar 

  15. C.Q. Sun, Size dependence of nanostructures: impact of bond order deficiency. Prog. Solid State Chem. 35(1), 1–159 (2007)

    Google Scholar 

  16. G. Janssen, F.D. Tichelaar, C.C.G. Visser, Stress gradients in CrN coatings. J. Appl. Phys. 100(9), 093512 (2006)

    ADS  Google Scholar 

  17. V.G. Uryadov, N.V. Aristova, E.N. Ofitserov, The temperature dependence of the surface tension of organic nonelectrolytes. Russ. J. Phys. Chem. 79(12), 2016–2019 (2005)

    Google Scholar 

  18. Z.Q. Cao, X. Zhang, Size-dependent creep behaviour of plasma-enhanced chemical vapour deposited silicon oxide films. J. Phys. D-Appl. Phys. 39(23), 5054–5063 (2006)

    ADS  Google Scholar 

  19. S. Garcia-Manyes, A.G. Guell, P. Gorostiza, F. Sanz, Nanomechanics of silicon surfaces with atomic force microscopy: an insight to the first stages of plastic deformation. J. Chem. Phys. 123(11), 114711 (2005)

    ADS  Google Scholar 

  20. Y.H. Wang, M.R. Moitreyee, R. Kumar, S.Y. Wu, J.L. Xie, P. Yew, B. Subramanian, L. Shen, K.Y. Zeng, The mechanical properties of ultra-low-dielectric-constant films. Thin Solid Films 462, 227–230 (2004)

    ADS  Google Scholar 

  21. R.A. Mirshams, P. Parakala, Nanoindentation of nanocrystalline Ni with geometrically different indenters. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 372(1–2), 252–260 (2004)

    Google Scholar 

  22. C.D. Gu, J.S. Lian, Z.H. Jiang, Q. Jiang, Enhanced tensile ductility in an electrodeposited nanocrystalline Ni. Scripta Mater. 54(4), 579–584 (2006)

    Google Scholar 

  23. E. Liu, X. Shi, H.S. Tan, L.K. Cheah, Z. Sun, B.K. Tay, J.R. Shi, The effect of nitrogen on the mechanical properties of tetrahedral amorphous carbon films deposited with a filtered cathodic vacuum arc. Surf. Coat. Technol. 120, 601–606 (1999)

    Google Scholar 

  24. C.Q. Sun, B.K. Tay, S.P. Lau, X.W. Sun, X.T. Zeng, S. Li, H.L. Bai, H. Liu, Z.H. Liu, E.Y. Jiang, Bond contraction and lone pair interaction at nitride surfaces. J. Appl. Phys. 90(5), 2615–2617 (2001)

    ADS  Google Scholar 

  25. X. Shi, B.K. Tay, D.I. Flynn, Z. Sun, in Tribological Properties of Tetrahedral Carbon Films Deposited by Filtered Cathodic Vacuum Arc Technique, ed. by W.W. Gerberich et al. Thin Films: Stresses and Mechanical Properties Vi, (Materials Research Society, Warrendale, 1997) pp. 293–298

    Google Scholar 

  26. D. Caceres, I. Vergara, R. Gonzalez, E. Monroy, F. Calle, E. Munoz, F. Omnes, Nanoindentation on AlGaN thin films. J. Appl. Phys. 86(12), 6773–6778 (1999)

    ADS  Google Scholar 

  27. M.H. Zhao, W.S. Slaughter, M. Li, S.X. Mao, Material-length-scale-controlled nanoindentation size effects due to strain-gradient plasticity. Acta Mater. 51(15), 4461–4469 (2003)

    Google Scholar 

  28. D. Ferro, R. Teghil, S.M. Barinov, L. D’Alessio, G. DeMaria, Thickness-dependent hardness of pulsed laser ablation deposited thin films of refractory carbides. Mater. Chem. Phys. 87(2–3), 233–236 (2004)

    Google Scholar 

  29. M.Y. Liu, B. Shi, J.X. Guo, X. Cai, H.W. Song, Lattice constant dependence of elastic modulus for ultrafine grained mild steel. Scripta Mater. 49(2), 167–171 (2003)

    Google Scholar 

  30. L.G. Zhou, H.C. Huang, Are surfaces elastically softer or stiffer? Appl. Phys. Lett. 84(11), 1940–1942 (2004)

    ADS  MathSciNet  Google Scholar 

  31. S.D. Mesarovic, C.M. McCarter, D.F. Bahr, H. Radhakrishnan, R.F. Richards, C.D. Richards, D. McClain, J. Jiao, Mechanical behavior of a carbon nanotube turf. Scripta Mater. 56(2), 157–160 (2007)

    Google Scholar 

  32. W.J. Price, S.A. Leigh, S.M. Hsu, T.E. Patten, G.Y. Liu, Measuring the size dependence of Young’s modulus using force modulation atomic force microscopy. J. Phys. Chem. A 110(4), 1382–1388 (2006)

    Google Scholar 

  33. K. Miyake, N. Satomi, S. Sasaki, Elastic modulus of polystyrene film from near surface to bulk measured by nanoindentation using atomic force microscopy. Appl. Phys. Lett. 89(3), 031925 (2006)

    ADS  Google Scholar 

  34. M.X. Gu, C.Q. Sun, Z. Chen, T.C.A. Yeung, S. Li, C.M. Tan, V. Nosik, Size, temperature, and bond nature dependence of elasticity and its derivatives on extensibility, Debye temperature, and heat capacity of nanostructures. Phys Rev B 75(12), 125403 (2007)

    ADS  Google Scholar 

  35. M. Kopycinska-Muller, R.H. Geiss, J. Muller, D.C. Hurley, Elastic-property measurements of ultrathin films using atomic force acoustic microscopy. Nanotechnology 16(6), 703–709 (2005)

    ADS  Google Scholar 

  36. F. Vaz, S. Carvalho, L. Rebouta, M.Z. Silva, A. Paul, D. Schneider, Young’s modulus of (Ti, Si)N films by surface acoustic waves and indentation techniques. Thin Solid Films 408(1–2), 160–168 (2002)

    ADS  Google Scholar 

  37. Y. Yan, H. Yin, Q.P. Sun, Y. Huo, Rate dependence of temperature fields and energy dissipations in non-static pseudoelasticity. Continuum Mech. Thermodyn. 24(4–6), 675–695 (2012)

    ADS  Google Scholar 

  38. A. Amini, W.Y. Yan, Q.P. Sun, Depth dependency of indentation hardness during solid-state phase transition of shape memory alloys. Appl. Phys. Lett. 99(2), 3603933 (2011)

    Google Scholar 

  39. V. Brazhkin, N. Dubrovinskaia, A. Nicol, N. Novikov, R. Riedel, R. Solozhenko, Y. Zhao, What-does ‘harder than diamond’ mean? Nat. Mater. 3(9), 576–577 (2004)

    ADS  Google Scholar 

  40. S.M. Chung, A.U.J. Yap, Effects of surface finish on indentation modulus and hardness of dental composite restoratives. Dent. Mater. 21(11), 1008–1016 (2005)

    Google Scholar 

  41. E. Manika, J. Maniks, Size effects in micro- and nanoscale indentation. Acta Mater. 54(8), 2049–2056 (2006)

    Google Scholar 

  42. Z.S. Ma, S.G. Long, Y. Pan, Y.C. Zhou, Indentation depth dependence of the mechanical strength of Ni films. J. Appl. Phys. 103(4), 043512 (2008)

    ADS  Google Scholar 

  43. C. Lu, Y.W. Mai, P.L. Tam, Y.G. Shen, Nanoindentation-induced elastic-plastic transition and size effect in alpha-Al2O3(0001). Philos. Mag. Lett. 87(6), 409–415 (2007)

    ADS  Google Scholar 

  44. T.Y. Zhang, W.H. Xu, Surface effects on nanoindentation. J. Mater. Res. 17(7), 1715–1720 (2002)

    ADS  Google Scholar 

  45. W.H. Xu, T.Y. Zhang, in Surface Effect for Different Types of Materials in Nanoindentation, ed. by K. Kishimoto et al. Advances in Fracture and Failure Prevention, Pts 1 and 2 (Trans Tech Publications Ltd, Zurich-Uetikon, 2004), pp. 1587–1592

    Google Scholar 

  46. W.D. Nix, H.J. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411–425 (1998)

    ADS  MATH  Google Scholar 

  47. S. Graca, R. Colaco, R. Vilar, Indentation size effect in nickel and cobalt laser clad coatings. Surf. Coat. Technol. 202(3), 538–548 (2007)

    Google Scholar 

  48. C.Q. Sun, S. Li, C.M. Li, Impact of bond order loss on surface and nanosolid mechanics. J. Phys. Chem. B 109(1), 415–423 (2005)

    Google Scholar 

  49. H. Fujii, T. Matsumoto, S. Izutani, S. Kiguchi, K. Nogi, Surface tension of molten silicon measured by microgravity oscillating drop method and improved sessile drop method. Acta Mater. 54(5), 1221–1225 (2006)

    Google Scholar 

  50. Q. Zhao, Y. Liu, E.W. Abel, Effect of temperature on the surface free energy of amorphous carbon films. J. Colloid Interface Sci. 280(1), 174–183 (2004)

    Google Scholar 

  51. F. Xiao, R.H. Yang, C. Zhang, Surface tension of molten Ni–W and Ni–Cr alloys. Mater. Sci. Eng. B-Solid State Mater. Adv Technol. 132(1–2), 183–186 (2006)

    Google Scholar 

  52. S. Halas, T. Durakiewicz, Temperature dependence of the surface energy of mercury from 0 to 250 degrees C. J. Phys.-Condens. Matter 14(47), L735–L737 (2002)

    ADS  Google Scholar 

  53. H.M. Lu, Q. Jiang, Surface tension and its temperature coefficient for liquid metals. J. Phys. Chem. B 109(32), 15463–15468 (2005)

    Google Scholar 

  54. H. Nakanishi, K. Nakazato, K. Terashima, Surface tension variation of molten silicon measured by ring tensiometry technique and related temperature and impurity dependence. Japan. J. Appl. Phys. Part 1-Regul. Pap. Short Notes Rev. Pap. 39(12A), 6487–6492 (2000)

    Google Scholar 

  55. J. Lee, W. Shimoda, T. Tanaka, Temperature and oxygen partial pressure dependences of the surface tension of liquid Sn–Ag and Sn–Cu lead-free solder alloys. Mon. Chem. 136(11), 1829–1834 (2005)

    Google Scholar 

  56. M. Rosner-Kuhn, W.H. Hofmeister, G. Kuppermann, R.J. Bayuzick, M.G. Frohberg, Investigations of the influence of oxygen on the surface tension of zirconium by the oscillating drop technique. Surf. Sci. 443(3), 159–164 (1999)

    ADS  Google Scholar 

  57. H.P. Wang, W.J. Yao, C.D. Cao, B. Wei, Surface tension of superheated and undercooled liquid Co–Si alloy. Appl. Phys. Lett. 85(16), 3414–3416 (2004)

    ADS  Google Scholar 

  58. L. Fiori, E. Ricci, E. Arato, P. Costa, Dynamic surface tension measurements on a molten metal-oxygen system: the behaviour of the temperature coefficient of the surface tension of molten tin. J. Mater. Sci. 40(9–10), 2155–2159 (2005)

    ADS  Google Scholar 

  59. C.Q. Sun, Oxidation electronics: bond–band-barrier correlation and its applications. Prog. Mater Sci. 48(6), 521–685 (2003)

    Google Scholar 

  60. J. Solon, J. Pecreaux, P. Girard, M.C. Faure, J. Prost, P. Bassereau, Negative tension induced by lipid uptake. Phys. Rev. Lett. 97(9), 098103 (2006)

    ADS  Google Scholar 

  61. T. Halicioglu, Calculation of surface energies for low index planes of diamond. Surf. Sci. 259(1–2), L714–L718 (1991)

    ADS  Google Scholar 

  62. C.Q. Chen, Y. Shi, Y.S. Zhang, J. Zhu, Y.J. Yan, Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96(7), 075505 (2006)

    ADS  Google Scholar 

  63. K.K. Nanda, Bulk cohesive energy and surface tension from the size-dependent evaporation study of nanoparticles. Appl. Phys. Lett. 87, 021909(2), 021909 (2005)

    Google Scholar 

  64. Y.P. Chiu, L.W. Huang, C.M. Wei, C.S. Chang, T.T. Tsong, Magic numbers of atoms in surface-supported planar clusters. Phys. Rev. Lett. 97(16), 165504 (2006)

    ADS  Google Scholar 

  65. I.S. Hwang, S.H. Chang, C.K. Fang, L.J. Chen, T.T. Tsong, Observation of finite-size effects on a structural phase transition of 2D nanoislands. Phys. Rev. Lett. 93(10), 106101 (2004)

    ADS  Google Scholar 

  66. M. Zhao, W.T. Zheng, J.C. Li, Z. Wen, M.X. Gu, C.Q. Sun, Atomistic origin, temperature dependence, and responsibilities of surface energetics: an extended broken-bond rule. Phys. Rev. B 75(8), 085427 (2007)

    ADS  Google Scholar 

  67. W.J. Yao, X.J. Han, M. Chen, B. Wei, Z.Y. Guo, Surface tension of undercooled liquid cobalt. J. Phys.-Condens. Matter 14(32), 7479–7485 (2002)

    ADS  Google Scholar 

  68. Temperature dependence of water surface tension http://hyperphysics.phy-astr.gsu.edu/hbase/surten.html#c3

  69. B.B. Sauer, G.T. Dee, Surface tension and melt cohesive energy density of polymer melts including high melting and high glass transition polymers. Macromolecules 35(18), 7024–7030 (2002)

    ADS  Google Scholar 

  70. T. Tanaka, M. Nakamoto, R. Oguni, J. Lee, S. Hara, Measurement of the surface tension of liquid Ga, Bi, Sn, In and Pb by the constrained drop method. Z. Metallk. 95(9), 818–822 (2004)

    Google Scholar 

  71. M.N. Magomedov, Dependence of the surface energy on the size and shape of a nanocrystal. Phys. Solid State 46(5), 954–968 (2004)

    ADS  Google Scholar 

  72. C.Q. Sun, Y. Wang, Y.G. Nie, Y. Sun, J.S. Pan, L.K. Pan, Z. Sun, Adatoms-induced local bond contraction, quantum trap depression, and charge polarization at Pt and Rh surfaces. J. Chem. Phys. C 113(52), 21889–21894 (2009)

    Google Scholar 

  73. C.Q. Sun, Y. Nie, J. Pan, X. Zhang, S.Z. Ma, Y. Wang, W. Zheng, Zone-selective photoelectronic measurements of the local bonding and electronic dynamics associated with the monolayer skin and point defects of graphite. RSC Adv. 2(6), 2377–2383 (2012)

    Google Scholar 

  74. F.H. Streitz, R.C. Cammarata, and K. Sieradzki, Surface-stress effects on elastic properties.1. Thin metal-films. Phys. Rev. B 49(15), 10699–10706 (1994)

    Google Scholar 

  75. B.W. Dodson, Many-body surface strain and surface reconstructions in fcc transition-metals. Phys. Rev. Lett. 60(22), 2288–2291 (1988)

    ADS  Google Scholar 

  76. A. Nduwimana, X.G. Gong, X.Q. Wang, Relative stability of missing-row reconstructed (110) surfaces of noble metals. Appl. Surf. Sci. 219(1–2), 129–135 (2003)

    ADS  Google Scholar 

  77. M.J. Rost, S.B. van Albada, J.W.M. Frenken, Thermally activated domain boundary formation on a missing row reconstructed surface: Au(110). Surf. Sci. 547(1–2), 71–84 (2003)

    ADS  Google Scholar 

  78. I.K. Robinson, M.C. Saint-Lager, P. Dolle, S. Boutet, M. De Santis, R. Baudoing-Savois, Relaxations in the 1 × 5 reconstruction of Pt(110). Surf. Sci. 575(3), 321–329 (2005)

    ADS  Google Scholar 

  79. A. Baraldi, S. Lizzit, F. Bondino, G. Comelli, R. Rosei, C. Sbraccia, N. Bonini, S. Baroni, A. Mikkelsen, J.N. Andersen, Thermal stability of the Rh(110) missing-row reconstruction: combination of real-time core-level spectroscopy and ab initio modeling. Phys. Rev. B 72(7), 075417 (2005)

    ADS  Google Scholar 

  80. J.M. Zhang, H.Y. Li, K.W. Xu, Reconstructed (110) surfaces of FCC transition metals. J. Phys. Chem. Solids 67(8), 1623–1628 (2006)

    ADS  MathSciNet  Google Scholar 

  81. C.Q. Sun, The sp hybrid bonding of C, N and O to the fcc(001) surface of nickel and rhodium. Surf. Rev. Lett. 7(3), 347–363 (2000)

    Google Scholar 

  82. C.Q. Sun, Electronic process of Cu(Ag, V, Rh)(001) surface oxidation: atomic valence evolution and bonding kinetics. Appl. Surf. Sci. 246(1–3), 6–13 (2005)

    ADS  Google Scholar 

  83. S. Kim, K.D. Kihm, Effect of adsorption-induced surface stress change on the stiffness of a microcantilever used as a salinity detection sensor. Appl. Phys. Lett. 93(8), 081911 (2008)

    ADS  Google Scholar 

  84. D. Sander, H. Ibach, Experimental-determination of adsorbate-induced surface stress—oxygen on Si(111) and Si(100). Phys. Rev. B 43(5), 4263–4267 (1991)

    ADS  Google Scholar 

  85. D. Sander, U. Linke, H. Ibach, Adsorbate-induced surface stress—sulfur, oxygen and carbon on Ni(100). Surf. Sci. 272(1–3), 318–325 (1992)

    ADS  Google Scholar 

  86. A. Grossmann, W. Erley, H. Ibach, Adsorbate-induced surface stress and surface reconstruction—oxygen, sulfur and carbon on Ni(111). Surf. Sci. 337(3), 183–189 (1995)

    ADS  Google Scholar 

  87. C. Bombis, M. Moiseeva, H. Ibach, Adsorbate-induced surface stress and self-assembly of (2 × 1)O on Cu(110) measured with an STM. Phys. Rev. B 72(24), 245408 (2005)

    ADS  Google Scholar 

  88. K.S. Hwang, K. Eom, J.H. Lee, D.W. Chun, B.H. Cha, D.S. Yoon, T.S. Kim, J.H. Park, Dominant surface stress driven by biomolecular interactions in the dynamical response of nanomechanical microcantilevers. Appl. Phys. Lett. 89(17), 173905 (2006)

    ADS  Google Scholar 

  89. A. Grossmann, W. Erley, H. Ibach, Adsorbate-induced surface stress—Co on Ni(100) and Ni(111). Surf. Sci. 313(1–2), 209–214 (1994)

    ADS  Google Scholar 

  90. W.T. Zheng, C.Q. Sun, Electronic process of nitriding: mechanism and applications. Prog. Solid State Chem. 34(1), 1–20 (2006)

    MATH  Google Scholar 

  91. V.G. Gavriljuk, Nitrogen in iron and steel. ISIJ Int. 36(7), 738–745 (1996)

    Google Scholar 

  92. Y.Q. Fu, B.B. Yan, N.L. Loh, C.Q. Sun, P. Hing, Deposition of diamond coating on pure titanium using micro-wave plasma assisted chemical vapor deposition. J. Mater. Sci. 34(10), 2269–2283 (1999)

    ADS  Google Scholar 

  93. I. Radu, R. Singh, R. Scholz, U. Gosele, S. Christiansen, G. Bruderl, C. Eichler, V. Harle, Formation of nanovoids in high-dose hydrogen implanted GaN. Appl. Phys. Lett. 89(3), 031912 (2006)

    ADS  Google Scholar 

  94. J.K. Lee, Y. Lin, Q.X. Jia, T. Hochbauer, H.S. Jung, L. Shao, A. Misra, M. Nastasi, Role of strain in the blistering of hydrogen-implanted silicon. Appl. Phys. Lett. 89(10), 101901 (2006)

    ADS  Google Scholar 

  95. R. Singh, R. Scholz, S.H. Christiansen, U. Gosele, Formation of nanovoids/microcracks in high dose hydrogen implanted AlN. Phys. Status Solidi A-Appl. Mater. Sci. 205(11), 2683–2686 (2008)

    ADS  Google Scholar 

  96. G.H. Lu, Y. Zhang, S. Deng, T. Wang, M. Kohyama, R. Yamamoto, F. Liu, K. Horikawa, M. Kanno, Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: grain boundary weakening. Phys. Rev. B 73(22), 224115 (2006)

    ADS  Google Scholar 

  97. Y.Q. Fu, C.Q. Sun, B.B. Yan, H.J. Du, Carbon turns the tensile surface stress of Ti to be compressive. J. Phys. D-Appl. Phys. 34(24), L129–L132 (2001)

    ADS  Google Scholar 

  98. H. Ibach, Adsorbate-induced surface stress. J. Vac. Sci. Technol. A-Vac. Surf. Films 12(4), 2240–2243 (1994)

    ADS  Google Scholar 

  99. F. Berberich, W. Matz, U. Kreissig, N. Schell, A. Mucklich, Mechanism of degradation of surface hardening at elevated temperature in TiAlV-alloys by in situ synchrotron radiation diffraction. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 199, 54–58 (2003)

    Google Scholar 

  100. R.A. Andrievski, Particulate nanostructured silicon nitride and titanium nitride. ACS symposium series (1996), 622

    Google Scholar 

  101. S. Veprek, The search for novel, superhard materials. J. Vac. Sci. Technol. A-Vac. Surf. Films 17(5), 2401–2420 (1999)

    Google Scholar 

  102. P. Schaaf, Laser nitriding of metals. Prog. Mater Sci. 47(1), 1–161 (2002)

    Google Scholar 

  103. S. Veprek, A.S. Argon, Towards the understanding of mechanical properties of super- and ultrahard nanocomposites. J. Vac. Sci. Tech. B 20(2), 650–664 (2002)

    Google Scholar 

  104. S. PalDey, S.C. Deevi, Single layer and multilayer wear resistant coatings of (Ti, Al)N: a review. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 342(1–2), 58–79 (2003)

    Google Scholar 

  105. X.M. Bai, W.T. Zheng, T. An, Superhard nano-multilayers and nanocomposite coatings. Prog. Nat. Sci. 15(2), 97–107 (2005)

    Google Scholar 

  106. H. Sjostrom, S. Stafstrom, M. Boman, J.E. Sundgren, Superhard and elastic carbon nitride thin-films having fullerene-like microstructure. Phys. Rev. Lett. 75(7), 1336–1339 (1995)

    ADS  Google Scholar 

  107. C. Wang, S.R. Yang, H.X. Li, J.Y. Zhang, Elastic properties of a–C : N : H films. J. Appl. Phys. 101(1), 013501 (2007)

    ADS  Google Scholar 

  108. Z.W. Zhao, B.K. Tay, C.Q. Sun, V. Ligatchev, Oxygen lone-pair states near the valence band edge of aluminum oxide thin films. J. Appl. Phys. 95(8), 4147–4150 (2004)

    ADS  Google Scholar 

  109. C.Q. Sun, A model of bonding and band-forming for oxides and nitrides. Appl. Phys. Lett. 72(14), 1706–1708 (1998)

    ADS  Google Scholar 

  110. Y. Zhang, H. Sun, C.F. Chen, Strain dependent bonding in solid C3N4: high elastic moduli but low strength. Phys. Rev. B 73(6), 064109 (2006)

    ADS  Google Scholar 

  111. C.Q. Sun, Thermo-mechanical behavior of low-dimensional systems: the local bond average approach. Prog. Mater. Sci. 54(2), 179–307 (2009)

    Google Scholar 

  112. C. Kittel, Introduction to Solid State Physics. 8th ed. (Willey, New York, 2005)

    Google Scholar 

  113. M. Przyborowski, T. Hibiya, M. Eguchi, I. Egry, Surface-tension measurement of molten silicon by the oscillating drop method using electromagnetic-levitation. J. Cryst. Growth 151(1–2), 60–65 (1995)

    ADS  Google Scholar 

  114. H. Fujii, T. Matsumoto, N. Hata, T. Nakano, M. Kohno, K. Nogi, Surface tension of molten silicon measured by the electromagnetic levitation method under microgravity. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 31(6), 1585–1589 (2000)

    Google Scholar 

  115. P.F. Paradis, T. Ishikawa, Surface tension and viscosity measurements of liquid and undercooled alumina by containerless techniques. Jpn. J. Appl. Phys. 44, 5082–5085 (2005)

    ADS  Google Scholar 

  116. S. Sauerland, G. Lohofer, I. Egry, Surface-tension measurements on levitated aspherical liquid nickel drops. Thermochim. Acta 218, 445–453 (1993)

    Google Scholar 

  117. B.J. Keene, K.C. Mills, R.F. Brooks, Surface-properties of liquid-metals and their effects on weldability. Mater. Sci. Technol. 1(7), 568–571 (1985)

    Google Scholar 

  118. J. Schade, A. McLean, W.A. Miller, in Surface Tension Measurements on Oscillating Droplets of Undercooled Liquid Metals and alloys, ed. by E.W. Collins, C.C. Koch. Proceedings of 115th Annual Meeting of IUS-AIME, New Orleans, 1986, p. 233

    Google Scholar 

  119. X.J. Han, N. Wang, B. Wei, Thermophysical properties of undercooled liquid cobalt. Philos. Mag. Lett. 82(8), 451–459 (2002)

    ADS  Google Scholar 

  120. B.J. Keene, Review of data for the surface-tension of pure metals. Int. Mater. Rev. 38(4), 157–192 (1993)

    Google Scholar 

  121. R.A. Eichel, I. Egry, Surface tension and surface segregation of liquid cobalt-iron and cobalt-copper alloys. Z. Metallk. 90(5), 371–375 (1999)

    Google Scholar 

  122. J. Lee, W. Shimoda, T. Tanaka, Temperature dependence of surface tension of liquid Sn–Ag, In-Ag and In-Cu alloys. Meas. Sci. Technol. 16(2), 438–442 (2005)

    ADS  Google Scholar 

  123. P.F. Paradis, T. Ishikawa, S. Yoda, Surface tension and viscosity of liquid and undercooled tantalum measured by a containerless method. J. Appl. Phys. 97(5), 053506 (2005)

    ADS  Google Scholar 

  124. P.F. Paradis, T. Ishikawa, R. Fujii, S. Yoda, Physical properties of liquid and undercooled tungsten by levitation techniques. Appl. Phys. Lett. 86(4), 041901 (2005)

    ADS  Google Scholar 

  125. J. Lee, W. Shimoda, T. Tanaka, Surface tension and its temperature coefficient of liquid Sn–X (X = Ag, Cu) alloys. Mater. Trans. 45(9), 2864–2870 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q. (2014). Liquid and Solid Skins. In: Relaxation of the Chemical Bond. Springer Series in Chemical Physics, vol 108. Springer, Singapore. https://doi.org/10.1007/978-981-4585-21-7_24

Download citation

Publish with us

Policies and ethics