Skip to main content

Theory: Bond–Band–Barrier (3B) Correlation

  • Chapter
  • First Online:
Relaxation of the Chemical Bond

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 108))

  • 2133 Accesses

Abstract

The covalent, ionic, and metallic bonds are the most popular kinds of interatomic interaction. These regular bonds are realized through valence charge sharing, either locally by neighboring atoms in the ionic and covalently bonded systems or delocally by all atoms of the entire body of a metal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Pauling, Atomic radii and interatomic distances in metals. J. Am. Chem. Soc. 69(3), 542–553 (1947)

    Article  Google Scholar 

  2. V.M. Goldschmidt, Crystal structure and chemical correlation. Ber. Deut. Chem. Ges. 60, 1263–1296 (1927)

    Article  Google Scholar 

  3. C.Q. Sun, Oxidation electronics: bond-band-barrier correlation and its applications. Prog. Mater. Sci. 48(6), 521–685 (2003)

    Article  Google Scholar 

  4. S.R. Morrison, The Chemical Physics of Surfaces (Plenum press, NY and London, 1977)

    Book  Google Scholar 

  5. C.W. Keenan, D.C. Kleinfelter, J.H. Wood, General College Chemistry (Harper and Row Publishers, New York, 1979)

    Google Scholar 

  6. W.G. Han, C.T. Zhang, A theory of nonlinear stretch vibrations of hydrogen-bonds. J. Phys.: Condens. Matter 3(1), 27–35 (1991)

    ADS  Google Scholar 

  7. R.H. Crabtree, Chemistry—A new type of hydrogen bond. Science 282(5396), 2000–2001 (1998)

    Article  Google Scholar 

  8. P. Hobza, Z. Havlas, The fluoroform center dot center dot center dot ethylene oxide complex exhibits a C–H center dot center dot center dot O anti-hydrogen bond. Chem. Phys. Lett. 303(3–4), 447–452 (1999)

    Article  ADS  Google Scholar 

  9. J.M.D. Coey, H. Sun, Improved magnetic-properties by treatment of iron-based rare-earth intermetallic compounds in ammonia. J. Magn. Magn. Mater. 87(3), L251–L254 (1990)

    Article  ADS  Google Scholar 

  10. P.W. Atkins, Physical Chemistry (Oxford University Press, Oxford, 1990)

    Google Scholar 

  11. C.Q. Sun, C.L. Bai, A model of bonding between oxygen and metal surfaces. J. Phys. Chem. Solids 58(6), 903–912 (1997)

    Article  ADS  Google Scholar 

  12. C.Q. Sun, What effects in nature the two-phase on the O–Cu(001)? Mod. Phys. Lett. B 11(2–3), 81–86 (1997)

    Article  ADS  Google Scholar 

  13. N.D. Lang, Apparent barrier height in scanning tunneling microscopy. Phys. Rev. B 37(17), 10395–10398 (1988)

    Article  ADS  Google Scholar 

  14. N.D. Lang, Small adsorbate dipole-moments need not imply small charge transfers. Surf. Sci. 127(2), L118–L122 (1983)

    Article  ADS  Google Scholar 

  15. N.D. Lang, in Scanning Tunneling Microscopy III. Springer Series in Surf. Sci., Vol. 29, ed. by R. Wiesendanger, H.J. Güntherodt (Springer, Berlin, 1993)

    Google Scholar 

  16. J. Ghijsen, L.H. Tjeng, J. Vanelp, H. Eskes, J. Westerink, G.A. Sawatzky, M.T. Czyzyk, Electronic-structure of Cu2O and CuO. Phys. Rev. B 38(16), 11322–11330 (1988)

    Article  ADS  Google Scholar 

  17. F. Marabelli, G.B. Parravicini, F. Salghettidrioli, Optical gap of CuO. Phys. Rev. B 52(3), 1433–1436 (1995)

    Article  ADS  Google Scholar 

  18. A. Goldmann, M. Donath, W. Altmann, V. Dose, Momentum-resolved inverse photoemission-study of nickel surfaces. Phys. Rev. B 32(2), 837–850 (1985)

    Article  ADS  Google Scholar 

  19. H.H. Rotermund, Investigation of dynamic processes in adsorbed layers by photoemission electron-microscopy (PEEM). Surf. Sci. 283(1–3), 87–100 (1993)

    Article  ADS  Google Scholar 

  20. H.H. Rotermund, J. Lauterbach, G. Haas, The formation of subsurface oxygen on Pt(100). Appl. Phys. A-Mater. Sci. Process. 57(6), 507–511 (1993)

    Article  ADS  Google Scholar 

  21. J. Lauterbach, H.H. Rotermund, Spatiotemporal pattern-formation during the catalytic CO-oxidation on Pt (100). Surf. Sci. 311(1–2), 231–246 (1994)

    Article  ADS  Google Scholar 

  22. J. Lauterbach, K. Asakura, H.H. Rotermund, Subsurface oxygen on Pt (100): kinetics of the transition from chemisorbed to subsurface state and its reaction with CO, H2 and O2. Surf. Sci. 313(1–2), 52–63 (1994)

    Article  ADS  Google Scholar 

  23. C.Q. Sun, O-Cu (001): I. Binding the signatures of LEED, STM and PES in a bond-forming way. Surf. Rev. Lett. 8(3–4), 367–402 (2001)

    Google Scholar 

  24. C.Q. Sun, Electronic process of Cu (Ag, V, Rh)(001) surface oxidation: atomic valence evolution and bonding kinetics. Appl. Surf. Sci. 246(1–3), 6–13 (2005)

    Article  ADS  Google Scholar 

  25. J.B. Pendry, Low Energy Electron Diffraction: The Theory and its Application to the Determination of Surface Structure (Academic Press, London, 1974)

    Google Scholar 

  26. C.Q. Sun, Spectral sensitivity of the VLEED to the bonding geometry and the potential barrier of the O-Cu (001) surface. Vacuum 48(5), 491–498 (1997)

    Article  Google Scholar 

  27. C.Q. Sun, C.L. Bai, Modelling of non-uniform electrical potential barriers for metal surfaces with chemisorbed oxygen. J. Phys.: Condens. Matter 9(27), 5823–5836 (1997)

    ADS  Google Scholar 

  28. R.O. Jones, P.J. Jennings, O. Jepsen, Surface-barrier in metals: a new model with application to W(001). Phys. Rev. B 29(12), 6474–6480 (1984)

    Article  ADS  Google Scholar 

  29. C.Q. Sun, S. Li, B.K. Tay, X.W. Sun, S.P. Lau, Solution certainty in the Cu (110)-(2×1)-2O(2-) surface crystallography. Int. J. Mod. Phys. B 16(1–2), 71–78 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q. (2014). Theory: Bond–Band–Barrier (3B) Correlation. In: Relaxation of the Chemical Bond. Springer Series in Chemical Physics, vol 108. Springer, Singapore. https://doi.org/10.1007/978-981-4585-21-7_2

Download citation

Publish with us

Policies and ethics