Advertisement

Effect of the Spin–Orbit Interaction on Partial Entangled Quantum Network

  • Abdel-Haleem Abdel-Aty
  • Nordin Zakaria
  • Lee Yen Cheong
  • Nasser Metwally
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 285)

Abstract

Dzyaloshiniskii–Moriya (DM) interaction is used to generate entangled network from partially entangled states in the presence of the spin–orbit coupling. The effect of the spin coupling on the entanglement between any two nodes of the network is investigated. It is shown that the entanglement decays as the coupling increases. For larger values of the spin coupling, the entanglement oscillates between upper and lower bounds. For initially entangled channels, the upper bound does not exceed its initial value, whereas for the channels generated via indirect interaction, the entanglement reaches its maximum value.

Keywords

Entengled quantum network Entanglement Spin–orbit interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chuang, Isaac L., Nielsen, Michael A.: Quantum computation and quantum information. In Cambridge University Press, (2000)Google Scholar
  2. 2.
    Zhang, Jian-Song., Chen, Ai-Xi.: Review on quantum discord of bipartite and multipartite systems. Quant. Phys. Lett. 1, 69-77 (2012)Google Scholar
  3. 3.
    Ezhov, A.A.: Pattern Recognition with Quantum Neural Networks. Lecture Notes in Computer Science. 2013, 60–71 (2001)Google Scholar
  4. 4.
    Caraiman, S. and Manta, V.: Image processing using quantum computing. System Theory, Control and Computing (ICSTCC), IEEE Press. 1–6 (2012)Google Scholar
  5. 5.
    Seth Lloyd, Masoud Mohseni, Patrick Rebentrost.: Quantum algorithms for supervised and unsupervised machine learning. http://arxiv.org/abs/1307.0411 (2013)
  6. 6.
    Ahmed Younes, Database Manipulation Operations on Quantum Systems, Quantum. Information. Review. 1, 9-17 (2013) (Jan. 2013), PP:9-17Google Scholar
  7. 7.
    Elliott, Y.C.: Building the quantum network. New J. Phys. 4(3), 46-53 (2002)Google Scholar
  8. 8.
    Mink, A., Hershman, B.J., Nakassis, A., Tang, X., Lu, R., Su, D.H., Clark, C.W., Williams, C.J., Hagley, E.W., Wen, J., Bienfang, J., Gross, A.J.: Quantum key distribution with 1.25 gbps clock synchronization. Optics Express. 12(9), 20112016 (2004)Google Scholar
  9. 9.
    Buntschu F.: Long-term performance of the swissquantum quantum key distribution network in a field environment. :New J. Phys, 13:123001, 2011.Google Scholar
  10. 10.
    Ishizuka H., et al.: Field test of quantum key distribution in the tokyo qkd network. Optics Express. 19(11), 1038710409, (2011)Google Scholar
  11. 11.
    Mtwallay, M.: Entangled network and quantum communications. Phys. Lett. A. 375(3), 426853 (2011)Google Scholar
  12. 12.
    Abdel-Aty, Abdel-Haleem., Cheong, LeeYen., Zakaria, Nordin., Metwally, Nasser,. Quantum network via partial entangled state. In: International Conference in Quantum Optics and Quantum Information (icQoQi), IOP Press (2013).Google Scholar
  13. 13.
    Abdel-Haleem Abdel-Aty, LeeYen Cheong, Nordin Zakaria, and Nasser Metwally. Entanglement and teleportation via partial entangled-state quantum network. (Submitted) Quant. Inf. Process., 2013.Google Scholar
  14. 14.
    Darwish, M., Obada, A.-S.F,. El-Barakaty, A.: Purity loss for a cooper pair box interacting dispersively with a nonclassical field under phase damping. Appl. Math. Inf. Sci, 5, 122 (2011)Google Scholar
  15. 15.
    Hessian, H.A.: Entropy Growth and Formation of Stationary Entanglement due to Intrinsic Noise in the Two-Mode JC Model. Quant. Phys. Lett. 2, 1-9 (2013)Google Scholar
  16. 16.
    Moriya, T.: New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett, 4, 228 (1960)Google Scholar
  17. 17.
    Friesen, M., Chutia, S., Joynt, R.: Detection and measurement of the dzyaloshinskii-moriya interaction in double quantum dot systems. Phys. Rev. 73, 241304 (2006)Google Scholar
  18. 18.
    Zhang, Guo-Feng.: Thermal entanglement and teleportation in a twoqubit heisenberg chain with dzyaloshinski-moriya anisotropic antisymmetric interaction. Phys. Rev. A. 75, 034304 (2007)Google Scholar
  19. 19.
    Sha–Sha Li, Ting-Qi Ren, Xiang-Mu Kong, and Kai Liu.: Thermal entanglement in the heisenberg”XXZ” model with dzyaloshinskiimoriya interaction. Physica A: Statistical Mechanics and its Applications, 391(12), 35–41 (2012)Google Scholar
  20. 20.
    Yeo, Y.: Teleportation via thermally entangled states of a two-qubit heisenberg XX chain. Phys. Rev. A, 66, 062312 (2002)Google Scholar
  21. 21.
    Ming-Yong Ye, Wei Jiang, Ping-Xing Chen, Yong-Sheng Zhang, Zheng- Wei Zhou, and Guang-Can Guo. Local distinguishability of orthogonal quantum states and generators of su(N). Phys. Rev. A, 76:032329, Sep 2007.Google Scholar
  22. 22.
    Ahmed, A-H.M., Zakaria, M.N., Metwally, N.: Teleportation in the presence of technical defects in transmission stations. Appl. Math. Inf. Sci. 6(3), 781 (2012)Google Scholar
  23. 23.
    Mohamed, A.-B.M.: Quantum discord and its geometric measure with death entanglement in correlated dephasing two qubits system. Quantum. Information. Review. 1, 1-7 (2013)Google Scholar
  24. 24.
    Da-Chuang Li and Zhuo-Liang Cao. Thermal entanglement in the anisotropic heisenberg “XYZ” model with different inhomogeneous magnetic fields. Optics Communications, 282(6), 1226–1230, (2009)Google Scholar
  25. 25.
    Zhenghong He, Zuhong Xiong, and Yanli Zhang. Influence of intrinsic decoherence on quantum teleportation via two-qubit heisenberg fXYZg chain. Physics Letters A, 354(12):79 83, 2006.Google Scholar
  26. 26.
    Majumdar, A.S., Adhikari, S., Ghosh, B., Nayak, N., Roy, S.: Teleportation via maximally and non-maximally entangled mixed states. Quant. Info. Comp. 10, 0398 (2010)Google Scholar
  27. 27.
    Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 50225025 (1997).Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2014

Authors and Affiliations

  • Abdel-Haleem Abdel-Aty
    • 1
  • Nordin Zakaria
    • 1
  • Lee Yen Cheong
    • 2
  • Nasser Metwally
    • 3
  1. 1.Computer and Information Science DepartmentUniversiti Teknologi PetronasTronohMalaysia
  2. 2.Fundamental and Applied Science DepartmentUniversiti Teknologi PetronasTronohMalaysia
  3. 3.Mathematics DepartmentUniversity of BahrainSakhirKingdom of Bahrain

Personalised recommendations