A Comparative Study of Cancer Classification Methods Using Microarray Gene Expression Profile

  • Hala Alshamlan
  • Ghada Badr
  • Yousef Alohali
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 285)


Microarray based gene expression profiling has been emerged as an efficient technique for cancer classification, as well as for diagnosis, prognosis, and treatment purposes. The primary task of microarray data classification is to determine a computational model from the given microarray data that can determine the class of unknown samples. In recent times, microarray technique has gained more attraction in both scientific and in industrial fields. It is important to determine the informative genes that cause the cancer to improve early cancer diagnosis and to give effective chemotherapy treatment. Classifying cancer microarray gene expression data is a challenging task because microarray is a high dimensional-low sample dataset with lots of noisy or irrelevant genes and missing data. Therefore, finding an accurate and an effective cancer classification approach is very significant issue in medical domain. In this paper, we will make a comparative study and we will categorize the effective binary classification approaches that have been applied for cancer microarray gene expression profile. Then we conclude by identifying the most accurate classification method that has the highest classification accuracy along with the smallest number of effective genes.


Cancer classification Microarray Classification methods Gene expression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abderrahim, A., Talbi, E., Khaled, M.: Hybridization of genetic and quantum algorithm for gene selection and classification of microarray data. In: Parallel Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on. pp. 1–8 (2009)Google Scholar
  2. 2.
    Alba, E., Garcia-Nieto, J., Jourdan, L., Talbi, E.: Gene selection in cancer classification using pso/svm and ga/svm hybrid algorithms. In: Evolutionary Computation, 2007. CEC 2007. IEEE Congress on. pp. 284–290 (2007)Google Scholar
  3. 3.
    Chen, Y., Zhao, Y.: A novel ensemble of classifiers for microarray data classification. Applied Soft Computing 8(4), 1664–1669 (2008)Google Scholar
  4. 4.
    Chuang, L.Y., Yang, C.H., Wu, K.C., Yang, C.H.: A hybrid feature selection method for dna microarray data. Computers in Biology and Medicine 41(4), 228–237 (2011)Google Scholar
  5. 5.
    El Akadi, A., Amine, A., El Ouardighi, A., Aboutajdine, D.: A new gene selection approach based on minimum redundancy-maximum relevance (mrmr) and genetic algorithm (ga). In: Computer Systems and Applications, 2009. AICCSA 2009. IEEE/ACS International Conference on. pp. 69{75 (2009)Google Scholar
  6. 6.
    Ghorai, S., Mukherjee, A., Sengupta, S., Dutta, P.: Multicategory cancer classification from gene expression data by multiclass nppc ensemble. In: Systems in Medicine and Biology (ICSMB), 2010 International Conference on. pp. 41–48 (2010)Google Scholar
  7. 7.
    Guo, S.B., Lyu, M.R., Lok, T.M.: Gene selection based on mutual information for the classification of multi-class cancer. In: Proceedings of the 2006 international conference on Computational Intelligence and Bioinformatics - Volume Part III. pp. 454–463. ICIC’06, Springer-Verlag, Berlin, Heidelberg (2006)Google Scholar
  8. 8.
    He, Y., Tang, Y., Zhang, Y.Q., Sunderraman, R.: Mining fuzzy association rules from microarray gene expression data for leukemia classification. In: Granular Computing, 2006 IEEE International Conference on. pp. 461–464 (2006)Google Scholar
  9. 9.
    Huang, H., Li, J., Liu, J.: Gene expression data classification based on improved semi-supervised local _sher discriminant analysis. Expert Systems with Applications 39(3), 2314–2320 (2012)Google Scholar
  10. 10.
    Huang, H.L., Lee, C.C., Ho, S.Y.: Selecting a minimal number of relevant genes from microarray data to design accurate tissue classifiers. Biosystems 90(1), 78–86 (2007)Google Scholar
  11. 11.
    Huang, H.L., Lee, C.C., Ho, S.Y.: Selecting a minimal number of relevant genes from microarray data to design accurate tissue classifiers. Biosystems 90(1), 78–86 (2007)Google Scholar
  12. 12.
    Huerta, E.B., Duval, B., kao Hao, J.: A hybrid ga/svm approach for gene selection and classification of microarray data. In: EvoWorkshops 2006, LNCS 3907. pp. 34–44. Springer (2006)Google Scholar
  13. 13.
    Iwen, M., Lang, W., Patel, J.: Scalable rule-based gene expression data classification. In: Data Engineering, 2008. ICDE 2008. IEEE 24th International Conference on. pp. 1062–1071 (2008)Google Scholar
  14. 14.
    Javed Khan, Jun Wei, M.R.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine 7(6), 673679 (2001)Google Scholar
  15. 15.
    Kianmehr, K., Alhajj, R.: CARSVM: A class association rule-based classification framework and its application to gene expression data. Artificial Intelligence in Medicine 44, 7–25 (2008)Google Scholar
  16. 16.
    Kumar, P.G., Victoire, T.A.A., Renukadevi, P., Devaraj, D.: Design of fuzzy expert system for microarray data classification using a novel genetic swarm algorithm. Expert Systems with Applications 39(2), 1811–1821 (2012)Google Scholar
  17. 17.
    Lee, C.P., Leu, Y.: A novel hybrid feature selection method for microarray data analysis. Appl. Soft Comput. 11(1), 208–213 (Jan 2011) 10Google Scholar
  18. 18.
    Lee, J.W., Lee, J.B., Park, M., Song, S.H.: An extensive comparison of recent classification tools applied to microarray data. Computational Statistics and Data Analysis 48(4), 869–885 (2005)Google Scholar
  19. 19.
    Linder, R., Dew, D., Sudhoff, H., Theegarten, D., Remberger, K., Poppl, S.J., Wagner, M.: The subsequent artificial neural network (sann) approach might bring more classificatory power to ann-based dna microarray analyses. Bioinformatics 20(18), 3544–3552 (2004)Google Scholar
  20. 20.
    Liu, H., Liu, L., Zhang, H.: Ensemble gene selection by grouping for microarray data classification. Journal of Biomedical Informatics 43(1), 81–87 (2010)Google Scholar
  21. 21.
    Liu, J., Cai, W., Shao, X.: Cancer classification based on microarray gene expression data using a principal component accumulation method. Science China Chemistry 54, 802{811 (2011)Google Scholar
  22. 22.
    Liu, K.H., Xu, C.G.: A genetic programming-based approach to the classification of multiclass microarray datasets. Bioinformatics 25(3), 331–337 (2009)Google Scholar
  23. 23.
    Mohamad, M., Omatu, S., Yoshioka, M., Deris, S.: An approach using hybrid methods to select informative genes from microarray data for cancer classification. In: Modeling Simulation, 2008. AICMS 08. Second Asia International Conference on. pp. 603–608 (2008)Google Scholar
  24. 24.
    Okun, O., Priisalu, H.: Multi-class cancer classification using ensembles of classifiers: Preliminary results. In: In Proceedings of the Workshop on Probabilistic Modeling and Machine Learning in Structural and Systems Biology. pp. 137–142 (2007)Google Scholar
  25. 25.
    Osareh, A., Shadgar, B.: Microarray data analysis for cancer classification. In: Health Informatics and Bioinformatics (HIBIT), 2010 5th International Symposium on. pp. 125–132 (2010)Google Scholar
  26. 26.
    Peng, S., Zeng, X., Li, X., Peng, X., Chen, L.: Multi-class cancer classification through gene expression profiles: microrna versus mrna. Journal of Genetics and Genomics 36(7), 409–416 (2009)Google Scholar
  27. 27.
    Peng, Y.: A novel ensemble machine learning for robust microarray data classification. Computers in Biology and Medicine 36(6), 553–573 (2006)Google Scholar
  28. 28.
    Perez, M., Rubin, D., Marwala, T., Scott, L., Featherston, J., Stevens, W.: The fuzzy gene filter: An adaptive fuzzy inference system for expression array feature selection. In: Garca-Pedrajas, N., Herrera, F., Fyfe, C., Bentez, J., Ali, M. (eds.) Trends in Applied Intelligent Systems, Lecture Notes in Computer Science, vol. 6098, pp. 62{71. Springer Berlin Heidelberg (2010)Google Scholar
  29. 29.
    Scott Pomeroy, P.T.: Prediction of central nervous system embryonal tumour out-come based on gene expression. Nature 415(6870), 436442 (2002)Google Scholar
  30. 30.
    Shen, L., Tan, E.C.: Dimension reduction-based penalized logistic regression for cancer classification using microarray data. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2(2), 166–175 (Apr 2005)Google Scholar
  31. 31.
    Wang, X., Gotoh, O.: Microarray-based cancer prediction using soft computing approach. Cancer Informatics 7, 123–139 (05 2009)Google Scholar
  32. 32.
    Yu, H., Xu, S.: Simple rule-based ensemble classifiers for cancer dna microarray data classification. In: Computer Science and Service System (CSSS), 2011 International Conference on. pp. 2555–2558 (2011)Google Scholar
  33. 33.
    Zhang, R., Huang, G.B., Sundararajan, N., Saratchandran, P.: Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis. Computational Biology and Bioinformatics, IEEE/ACM Transactions on 4(3), 485–495 (2007)Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2014

Authors and Affiliations

  1. 1.King Saud University, College of Computer and Information SciencesRiyadhKingdom of Saudi Arabia

Personalised recommendations