Skip to main content

Transmission-Line Based Metamaterials in Antenna Engineering

  • Reference work entry
  • First Online:
Handbook of Antenna Technologies

Abstract

In this chapter, transmission-line-based metamaterials are presented, and their application to the design of passive and active antennas is outlined. Transmission-line metamaterials, also termed negative-refractive-index transmission-line (NRI-TL) metamaterials, are formed by periodically loading a transmission line with lumped-element series capacitors and shunt inductors, and it is shown that they can support both forward and backward waves, as well as standing waves with a zero propagation constant. These rich propagation characteristics form the underlying basis for their use in many antenna applications, including leaky-wave antennas, compact resonant antennas, and multiband antennas. The resonant characteristics of the NRI-TL metamaterial structures reveal how these structures can be designed to offer multiband responses whose resonant frequencies are not harmonically related while offering large degrees of miniaturization. Design equations for rapid prototyping are presented, enabling the simple design of metamaterial antennas to a given specification using standard microwave substrates and loading elements in either fully printed form or surface-mount chip components. A number of passive metamaterial antenna applications are presented, including examples of zeroth-order resonant antennas, negative-order resonant antennas, epsilon-negative antennas, mu-negative antennas, metamaterial dipole antennas, and metamaterial-inspired antennas. Active non-Foster matching networks for small antennas are also presented using negative impedance converters (NICs) and negative impedance inverters (NIIs), and it is demonstrated how these can be applied to metamaterial-inspired antennas. Finally, a new method of implementing reactive non-Foster elements using loss-compensated negative-group-delay (NGD) networks is presented that exhibits improved stability, dispersion, and achievable bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albee TK (1976) Broadband VLF loop antenna system. US Patent 3,953,799

    Google Scholar 

  • Albert KP (1973) Broadband antennas systems realized by active circuit conjugate impedance matching. Master’s thesis, Naval Postgraduate School, Monterey. Acc. No. AD769800

    Google Scholar 

  • Alu A, Bilotti F, Engheta N, Vegni L (2007) Subwavelength, compact, resonant patch antennas loaded with metamaterials. IEEE Trans Antennas Propag 55(1):13–25

    Article  Google Scholar 

  • Antoniades MA (2004) Compact linear metamaterial phase shifters for broadband applications. Master’s thesis, University of Toronto, Toronto

    Google Scholar 

  • Antoniades MA (2009) Microwave devices and antennas based on negative-refractive-index transmission-line metamaterials. Ph D thesis, University of Toronto, Toronto

    Google Scholar 

  • Antoniades MA, Eleftheriades GV (2003) Compact linear lead/lag metamaterial phase shifters for broadband applications. IEEE Antennas Wirel Propag Lett 2(1):103–106

    Article  Google Scholar 

  • Antoniades MA, Eleftheriades GV (2008a) A CPS leaky-wave antenna with reduced beam squinting using NRI-TL metamaterials. IEEE Trans Antennas Propag 56(3):708–721

    Article  Google Scholar 

  • Antoniades MA, Eleftheriades GV (2008b) A folded-monopole model for electrically small NRI-TL metamaterial antennas. IEEE Antennas Wirel Propag Lett 7:425–428

    Article  Google Scholar 

  • Antoniades MA, Eleftheriades GV (2009) A broadband dual-mode monopole antenna using NRI-TL metamaterial loading. IEEE Antennas Wirel Propag Lett 8:258–261

    Article  Google Scholar 

  • Antoniades MA, Eleftheriades GV (2011a) A multi-band NRI-TL metamaterial-loaded bow-tie antenna. In: Proceedings IEEE AP-S international symposium on antennas and propagation, Spokane, pp 1−4

    Google Scholar 

  • Antoniades MA, Eleftheriades GV (2011b) A NRI-TL metamaterial-loaded bow-tie antenna. In: Proceedings fifth European conference on antennas and propagation, Rome, pp 1−4

    Google Scholar 

  • Antoniades MA, Eleftheriades GV (2012) Multiband compact printed dipole antennas using NRI-TL metamaterial loading. IEEE Trans Antennas Propag 60(12):5613–5626

    Article  Google Scholar 

  • Antoniades MA, Abbosh A, Razali AR (2013) A compact multiband NRI-TL metamaterial-loaded planar antenna for heart failure monitoring. In: Proceedings IEEE AP-S international symposium on antennas and propagation, Orlando, pp 1372−1373

    Google Scholar 

  • Baek S, Lim S (2009) Miniaturised zeroth-order antenna on spiral slotted ground plane. Electron Lett 45(20):1012–1014

    Article  Google Scholar 

  • Bahr A (1977) On the use of active coupling networks with electrically small receiving antennas. IEEE Trans Antennas Propag 25(6):841–845

    Article  MathSciNet  Google Scholar 

  • Balanis CA (ed) (2008) Modern antenna handbook. Wiley, Hoboken

    Google Scholar 

  • Balanis CA (2012) Advanced engineering electromagnetics, 2nd edn. Wiley, New York

    Google Scholar 

  • Bertin G, Bilotti F, Piovano B, Vallauri R, Vegni L (2012) Switched beam antenna employing metamaterial-inspired radiators. IEEE Trans Antennas Propag 60(8):3583–3593

    Article  Google Scholar 

  • Best SR (2005) The performance properties of electrically small resonant multiple-arm folded wire antennas. IEEE Antennas Propag Mag 47(4):13–27

    Article  Google Scholar 

  • Best SR (2014) The significance of composite right/left-handed (CRLH) transmission-line theory and reactive loading in the design of small antennas. IEEE Antennas Propag Mag 56(4):15–33

    Google Scholar 

  • Bilotti F, Alu A, Vegni L (2008) Design of miniaturized metamaterial patch antennas with μ-negative loading. IEEE Trans Antennas Propag 56(6):1640–1647

    Article  Google Scholar 

  • Bit-Babik G, Di Nallo C, Svigelj J, Faraone A (2007) Small wideband antenna with non-Foster loading elements. In: Proceedings International conference on electromagnetics in advanced applications (ICEAA), Torino, Italy, pp 105−107

    Google Scholar 

  • Bode HW (1947) Network analysis and feedback amplifier design. D. Van Nostrand, New York

    Google Scholar 

  • Brownlie J (1966) On the stability properties of a negative impedance converter. IEEE Trans Circuit Theory 13(1):98–99

    Article  Google Scholar 

  • Brucher A, Meunier PH, Jarry B, Guilion P, Sussman-Fort SE (1995) Negative resistance monolithic circuits for microwave planar active filter losses compensation. In: Proceedings 25th European microwave conference (EuMC), vol 2, Bologna, Italy, pp 910−915

    Google Scholar 

  • Caloz C, Itoh T (2003) Novel microwave devices and structures based on the transmission line approach of meta-materials. In: Proceedings IEEE MTT-S international microwave symposium, vol 1, Philadelphia, pp 195−198

    Google Scholar 

  • Caloz C, Itoh T (2006) Electromagnetic metamaterials: transmission line theory and microwave applications. Wiley, Hoboken

    Google Scholar 

  • Capolino F (ed) (2009) Metamaterials handbook: applications of metamaterials. CRC Press, Boca Raton

    Google Scholar 

  • Chu LJ (1948) Physical limitations of omni-directional antennas. J Appl Phys 19(12):1163–1175

    Article  Google Scholar 

  • Coilcraft Inc (2015) 0402CS (1005) Ceramic chip inductors. http://www.coilcraft.com/0402cs.cfm. Document 198-1. Accessed 1 Feb 2015

  • Collin RE (1992) Foundations for microwave engineering, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Cui TJ, Smith DR, Liu R (eds) (2010) Metamaterials: theory, design, and applications. Springer, New York

    Google Scholar 

  • Di Nallo C, Bit-Babik G, Faraone A (2007) Wideband antenna using non-Foster loading elements. In: Proceedings IEEE AP-S international symposium antennas on propagation, Honolulu, HI, USA, pp 4501–4504

    Google Scholar 

  • Dong Y, Itoh T (2010) Miniaturized substrate integrated waveguide slot antennas based on negative order resonance. IEEE Trans Antennas Propag 58(12):3856–3864

    Article  Google Scholar 

  • Dong Y, Toyao H, Itoh T (2011) Compact circularly-polarized patch antenna loaded with metamaterial structures. IEEE Trans Antennas Propag 59(11):4329–4333

    Article  Google Scholar 

  • Eleftheriades GV (2007) Enabling RF/microwave devices using negative-refractive-index transmission-line (NRI-TL) metamaterials. IEEE Antennas Propag Mag 49(2):34–51

    Article  Google Scholar 

  • Eleftheriades GV (2009) EM transmission-line metamaterials. Mater Today 12:30–41

    Article  Google Scholar 

  • Eleftheriades GV, Balmain KG (eds) (2005) Negative-refraction metamaterials: fundamental principles and applications. Wiley, Hoboken

    Google Scholar 

  • Eleftheriades GV, Iyer AK, Kremer PC (2002) Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Trans Microw Theory Tech 50(12):2702–2712

    Article  Google Scholar 

  • Eleftheriades GV, Grbic A, Antoniades MA (2004) Negative-refractive-index transmission-line metamaterials and enabling electromagnetic applications. In: Proceedings IEEE AP-S international symposium antennas on propagation, vol 2, Monterey, pp 1399−1402

    Google Scholar 

  • Eleftheriades GV, Antoniades MA, Qureshi F (2007) Antenna applications of negative-refractive-index transmission-line structures. IET Microw Antennas Propag 1(1):12–22

    Article  Google Scholar 

  • Elek F, Eleftheriades GV (2005) A two-dimensional uniplanar transmission-line metamaterial with a negative index of refraction. New J Phys 7(163):1–18

    MathSciNet  Google Scholar 

  • Engheta N, Ziolkowski RW (eds) (2006) Metamaterials: physics and engineering explorations. Wiley, Hoboken

    Google Scholar 

  • Fano RM (1950) Theoretical limitations on the broadband matching of arbitrary impedances. J Franklin Inst 249(1):57–83

    Article  Google Scholar 

  • Foster RM (1924) A reactance theorem. Bell Syst Tech J 3:259–267

    Article  Google Scholar 

  • Goubau G (1976) Multi-element monopole antennas. In: Proceedings ECOM-ARO workshop on electrically small antennas, Ft. Monmouth, pp 63−67

    Google Scholar 

  • Grbic A, Eleftheriades GV (2002) A backward-wave antenna based on negative refractive index L-C networks. In: Proceedings IEEE AP-S international symposium antennas on propagation, vol 4, San Antonio, pp 340−343

    Google Scholar 

  • Grbic A, Eleftheriades GV (2004) Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys Rev Lett 92(11):117403

    Article  Google Scholar 

  • Hakim SS (1965) Some new negative-impedance convertors. Electron Lett 1(1):9–10

    Article  Google Scholar 

  • Harrington RF (1960) Effect of antenna size on gain, bandwidth and efficiency. J Res Natl Bur Stand 64D(1):1–12

    MATH  Google Scholar 

  • Harris AD, Myers GA (1968) An investigation of broadband miniature antennas. Technical report AD0677320, Naval Postgraduate School, Monterey

    Google Scholar 

  • Hashemi MRM, Itoh T (2011) Evolution of composite right/left-handed leaky-wave antennas. Proc IEEE 99(10):1746–1754

    Article  Google Scholar 

  • He Y, Eleftheriades GV (2012) Metamaterial-inspired wideband circular monopole antenna. In: Proceedings IEEE AP-S international symposium antennas on propagation, Chicago, pp 1−2

    Google Scholar 

  • Herraiz-Martinez FJ, Gonzalez-Posadas V, Garcia-Munoz LE, Segovia-Vargas D (2008a) Multifrequency and dual-mode patch antennas partially filled with left-handed structures. IEEE Trans Antennas Propag 56(8):2527–2539

    Article  Google Scholar 

  • Herraiz-Martinez FJ, Segovia-Vargas D, Garcia-Munoz LE, Gonzalez-Posadas V (2008b) Dual-frequency printed dipole loaded with meta-material particles. In: Proceedings IEEE AP-S international symposium antennas on propagation, San Diego, pp 1−4

    Google Scholar 

  • Herraiz-Martinez FJ, Hall PS, Liu Q, Segovia-Vargas D (2011) Left-handed wire antennas over ground plane with wideband tuning. IEEE Trans Antennas Propag 59(5):1460–1471

    Article  Google Scholar 

  • Iizuka H, Hall PS (2007) Left-handed dipole antennas and their implementations. IEEE Trans Antennas Propag 55(55):1246–1253

    Article  Google Scholar 

  • Islam R, Eleftheriades GV (2007) Miniaturized microwave components and antennas using negative-refractive-index transmission-line (NRI-TL) metamaterials. Metamaterials (Elsevier) 1:53–61

    Article  Google Scholar 

  • Islam R, Eleftheriades GV (2012) A review of the microstrip/negative-refractive-index transmission-line coupled-line couplers. IET Microw Antennas Propag 6(1):31–45

    Article  Google Scholar 

  • Iyer AK, Eleftheriades GV (2004) Leaky-wave radiation from planar negative-refractive-index transmission-line metamaterials. In: Proceedings IEEE MTT-S international microwave symposium, vol 2, Forth Worth, pp 1411−1414

    Google Scholar 

  • Iyer AK, Kremer PC, Eleftheriades GV (2003) Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial. Opt Express 11(7):696–708

    Article  Google Scholar 

  • Jin P, Ziolkowski RW (2010) Linearly and circularly polarized, planar, electrically small, metamaterial-engineered dipole antennas. In: Proceedings IEEE AP-S international symposium antennas on propagation, Toronto, pp 1−4

    Google Scholar 

  • Kim J, Kim G, Seong W, Choi J (2009) A tunable internal antenna with an epsilon negative zeroth order resonator for DVB-H service. IEEE Trans Antennas Propag 57(12):4014–4017

    Article  Google Scholar 

  • Kolev S, Delacressonniere B, Gautier J-L (2001) Using a negative capacitance to increase the tuning range of a varactor diode in MMIC technology. IEEE Trans Microw Theory Tech 49(12):2425–2430

    Article  Google Scholar 

  • Lai A, Itoh T, Caloz C (2004) Composite right/left-handed transmission line metamaterials. IEEE Microw Mag 5(3):34–50

    Article  Google Scholar 

  • Lai A, Leong KMKH, Itoh T (2007) Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures. IEEE Trans Antennas Propag 55(3):868–876

    Article  Google Scholar 

  • Larky AI (1956) Negative-impedance converter design. Ph D thesis, Stanford University

    Google Scholar 

  • Larky AI (1957) Negative-impedance converters. IRE Trans Circuit Theory 4(3):124–131

    Article  Google Scholar 

  • Lee H-M (2011) A compact zeroth-order resonant antenna employing novel composite right/left-handed transmission-line unit-cells structure. IEEE Antennas Wirel Propag Lett 10:1377–1380

    Article  Google Scholar 

  • Lee J-G, Lee J-H (2007) Zeroth order resonance loop antenna. IEEE Trans Antennas Propag 55(3):994–997

    Article  Google Scholar 

  • Lee C-J, Leong KMKH, Itoh T (2006) Composite right/left-handed transmission line based compact resonant antennas for RF module integration. IEEE Trans Antennas Propag 54(8):2283–2291

    Article  Google Scholar 

  • Linvill JG (1953) Transistor negative-impedance converters. Proc IRE 41(6):725–729

    Article  Google Scholar 

  • Liu Q, Hall PS, Borja AL (2009) Efficiency of electrically small dipole antennas loaded with left-handed transmission lines. IEEE Trans Antennas Propag 57(10):3009–3017

    Article  Google Scholar 

  • Liu C-C, Chi P-L, Lin Y-D (2012) Compact zeroth-order resonant antenna based on dual-arm spiral configuration. IEEE Antennas Wirel Propag Lett 11:318–321

    Article  Google Scholar 

  • Liu W, Chen ZN, Qing X (2014) Metamaterial-based low-profile broadband mushroom antenna. IEEE Trans Antennas Propag 62(3):1165–1172

    Article  Google Scholar 

  • Marques R, Martin F, Sorolla M (2007) Metamaterials with negative parameters: theory, design and microwave applications. Wiley, Hoboken

    Book  Google Scholar 

  • Mehdipour A, Eleftheriades GV (2014) Leaky-wave antennas using negative-refractive-index transmission-line metamaterial supercells. IEEE Trans Antennas Propag 62(8):3929–3942

    Article  MATH  Google Scholar 

  • Middlebrook RD (1975) Measurement of loop gain in feedback systems. Int J Electron 38(4):485–512

    Article  Google Scholar 

  • Mirzaei H, Eleftheriades GV (2011a) A wideband metamaterial-inspired compact antenna using embedded non-Foster matching. In: Proceedings IEEE AP-S international symposium antennas on propagation, Spokane, WA, USA, pp 1950–1953

    Google Scholar 

  • Mirzaei H, Eleftheriades GV (2011b) A compact frequency-reconfigurable metamaterial-inspired antenna. IEEE Antennas Wirel Propag Lett 10:1154–1157

    Article  Google Scholar 

  • Mirzaei H, Eleftheriades GV (2013a) Unilateral non-Foster elements using loss-compensated negative-group-delay networks for guided-wave applications. In: Proceedings IEEE MTT-S international microwave symposium, Seattle, WA, USA, pp 1–4

    Google Scholar 

  • Mirzaei H, Eleftheriades GV (2013b) A resonant printed monopole antenna with an embedded non-Foster matching network. IEEE Trans Antennas Propag 61(11):5363–5371

    Article  Google Scholar 

  • Mirzaei H, Eleftheriades GV (2013c) Realizing non-Foster reactive elements using negative-group-delay networks. IEEE Trans Microw Theory Tech 61(12):4322–4332

    Article  Google Scholar 

  • Mirzaei H, Eleftheriades GV (2014) Realizing non-Foster reactances using negative-group-delay networks and applications to antennas. In: Proceedings IEEE radio wireless symposium (RWS), Newport Beach, CA, USA, pp 58−60

    Google Scholar 

  • Myers BR (1965) New subclass of negative-impedance convertors with improved gain-product sensitivities. Electron Lett 1(3):68–70

    Article  Google Scholar 

  • Nagata M (1965) A simple negative impedance circuit with no internal bias supplies and good linearity. IEEE Trans Circuit Theory 12(3):433–434

    Article  Google Scholar 

  • Niu B-J, Feng Q-Y (2013) Bandwidth enhancement of CPW-fed antenna based on epsilon negative zeroth- and first-order resonators. IEEE Antennas Wirel Propag Lett 12:1125–1128

    Article  Google Scholar 

  • Niu B-J, Feng Q-Y, Shu P-L (2013) Epsilon negative zeroth- and first-order resonant antennas with extended bandwidth and high efficiency. IEEE Trans Antennas Propag 61(12):5878–5884

    Article  Google Scholar 

  • Park B-C, Lee J-H (2011) Omnidirectional circularly polarized antenna utilizing zeroth-order resonance of epsilon negative transmission line. IEEE Trans Antennas Propag 59(7):2717–2721

    Article  Google Scholar 

  • Park J-H, Ryu Y-H, Lee J-G, Lee J-H (2007) Epsilon negative zeroth-order resonator antenna. IEEE Trans Antennas Propag 55(12):3710–3712

    Article  Google Scholar 

  • Park JH, Ryu Y-H, Lee J-H (2010) Mu-zero resonance antenna. IEEE Trans Antennas Propag 58(6):1865–1875

    Article  Google Scholar 

  • Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85(18):3966–3969

    Article  Google Scholar 

  • Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312:1780–1782

    Article  MathSciNet  MATH  Google Scholar 

  • Platzker A, Struble W (1994) Rigorous determination of the stability of linear n-node circuits from network determinants and the appropriate role of the stability factor K of their reduced two-ports. In: Proceedings 3rd international workshop on integrated nonlinear microwave and millimeterwave circuits, Duisburg, Germany, pp 93−107

    Google Scholar 

  • Qureshi F, Antoniades MA, Eleftheriades GV (2005) A compact and low-profile metamaterial ring antenna with vertical polarization. IEEE Antennas Wirel Propag Lett 4:333–336

    Article  Google Scholar 

  • Ryan CGM, Eleftheriades GV (2012) Two compact, wideband, and decoupled meander-line antennas based on metamaterial concepts. IEEE Antennas Wirel Propag Lett 11:1277–1280

    Article  Google Scholar 

  • Sanada A, Caloz C, Itoh T (2004) Planar distributed structures with negative refractive index. IEEE Trans Microw Theory Tech 52(4):1252–1263

    Article  Google Scholar 

  • Sandberg IW (1960) Synthesis of driving-point impedances with active RC networks. Bell Syst Tech J 39(4):947–962

    Article  Google Scholar 

  • Schelkunoff SA, Friis HT (1952) Antennas: theory and practice. Wiley, New York, p 309

    MATH  Google Scholar 

  • Schussler M, Freese J, Jakoby R (2004a) Design of compact planar antennas using LH-transmission lines. In: Proceedings IEEE MTT-S international microwave symposium, vol 1, Forth Worth, pp 209−212

    Google Scholar 

  • Schussler M, Oertel M, Fritsche C, Freese J, Jakoby R (2004b) Design of periodically L-C loaded patch antennas. In: Proceedings 27th ESA antenna technology workshop on innovative periodic antennas, Santiago de Compostela

    Google Scholar 

  • Sievenpiper D, Lijun Z, Broas RFJ, Alexopoulos NG, Yablonovitch E (1999) High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans Microw Theory Tech 47(11):2059–2074

    Article  Google Scholar 

  • Skahill G, Rudish RM, Piero JA (1998) Electrically small, efficient, wideband, low-noise antenna elements. In: Proceedings antenna application symposium, Monticello, IL, USA, pp 214−231

    Google Scholar 

  • Stearns SD (2011) Non-Foster circuits and stability theory. In: Proceedings IEEE AP-S international symposium antennas on propagation, Spokane, WA, USA, pp 1942–1945

    Google Scholar 

  • Stearns SD (2012) Incorrect stability criteria for non-Foster circuits. In: Proceedings IEEE AP-S international symposium antennas on propagation, Chicago, IL, USA, pp 1–4

    Google Scholar 

  • Stearns SD (2013) Circuit stability theory for non-Foster circuits. In: Proceedings IEEE MTT-S international microwave symposium, Seattle, WA, USA, pp 1–4

    Google Scholar 

  • Struble W, Platzker A (1993) A rigorous yet simple method for determining stability of linear N-port networks [and MMIC application]. In: Proceedings GaAs IC symposium digest, San Jose, CA, USA, pp 251−254

    Google Scholar 

  • Sussman-Fort SE (1998) Gyrator-based biquad filters and negative impedance converters for microwaves. Int J RF Microw Comput Aided Eng 8(2):86–101

    Article  Google Scholar 

  • Sussman-Fort SE, Rudish RM (2009) Non-Foster impedance matching of electrically-small antennas. IEEE Trans Antennas Propag 57(8):2230–2241

    Article  Google Scholar 

  • Tian M, Visvanathan V, Hantgan J, Kundert K (2001) Striving for small-signal stability. IEEE Circuits Devices Mag 17(1):31–41

    Article  Google Scholar 

  • Tretyakov SA, Ermutlu M (2005) Modeling of patch antennas partially loaded with dispersive backward-wave materials. IEEE Antennas Wirel Propag Lett 4:266–269

    Article  Google Scholar 

  • Vaughan R, Bach-Andersen J (2003) Channels, propagation and antennas for mobile communications. IEE, London

    Book  Google Scholar 

  • Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of ∈ and μ. Soviet Phys Uspekhi 10(4):509–514

    Article  Google Scholar 

  • Volakis JL (2007) Antenna engineering handbook, 4th edn. McGraw-Hill Professional, New York

    Google Scholar 

  • Volakis JL, Chen C-C, Fujimoto K (2010) Small antennas: miniaturization techniques & applications. McGraw-Hill Professional, New York

    Google Scholar 

  • Wang C, Hu B-J, Zhang X-Y (2010) Compact triband patch antenna with large scale of frequency ratio using CRLH-TL structures. IEEE Antennas Wirel Propag Lett 9:744–747

    Article  Google Scholar 

  • Wei K, Zhang Z, Feng Z (2012a) Design of a wideband horizontally polarized omnidirectional printed loop antenna. IEEE Antennas Wirel Propag Lett 11:49–52

    Article  Google Scholar 

  • Wei K, Zhang Z, Feng Z, Iskander MF (2012b) A MNG-TL loop antenna array with horizontally polarized omnidirectional patterns. IEEE Trans Antennas Propag 60(6):2702–2710

    Article  Google Scholar 

  • Wheeler HA (1947) Fundamental limitations of small antennas. Proc IRE 35(12):1479–1484

    Article  Google Scholar 

  • White CR, Colburn JS, Nagele RG (2012) A non-Foster VHF monopole antenna. IEEE Antennas Wirel Propag Lett 11:584–587

    Article  Google Scholar 

  • Xu ZA, White CR, Yung MW, Yoon YJ, Hitko DA, Colburn JS (2012) Non-Foster circuit adaptation for stable broadband operation. IEEE Microw Wirel Compon Lett 22(11):571–573

    Article  Google Scholar 

  • Yanagisawa T (1957) RC active networks using current inversion type negative impedance converters. IRE Trans Circuit Theory 4(3):140–144

    Article  Google Scholar 

  • Zedler M, Eleftheriades GV (2011) Anisotropic transmission-line metamaterials for 2-D transformation optics applications. Proc IEEE 99(10):1634–1645

    Article  Google Scholar 

  • Zhu J, Eleftheriades GV (2009a) Dual-band metamaterial-inspired small monopole antenna for WiFi applications. Electron Lett 45(22):1104–1106

    Article  Google Scholar 

  • Zhu J, Eleftheriades GV (2009b) A compact transmission-line metamaterial antenna with extended bandwidth. IEEE Antennas Wireless Propag Lett 8:295–298

    Article  Google Scholar 

  • Zhu J, Eleftheriades GV (2010) A simple approach for reducing mutual coupling in two closely spaced metamaterial-inspired monopole antennas. IEEE Antennas Wireless Propag Lett 9:379–382

    Article  Google Scholar 

  • Zhu N, Ziolkowski RW (2012a) Broad-bandwidth, electrically small antenna augmented with an internal non-Foster element. IEEE Antennas Wireless Propag Lett 11:1116–1120

    Article  Google Scholar 

  • Zhu N, Ziolkowski RW (2012b) Design and measurements of an electrically small, broad bandwidth, non-Foster circuit-augmented protractor antenna. Appl Phys Lett 101(2):024107

    Article  Google Scholar 

  • Zhu J, Antoniades MA, Eleftheriades GV (2010) A compact tri-band monopole antenna with single-cell metamaterial loading. IEEE Trans Antennas Propag 58(4):1031–1038

    Article  Google Scholar 

  • Ziolkowski RW, Erentok A (2006) Metamaterial-based efficient electrically small antennas. IEEE Trans Antennas Propag 54(7):2113–2130

    Article  Google Scholar 

  • Ziolkowski RW, Tang M-C, Zhu N (2013) An efficient, broad bandwidth, high directivity, electrically small antenna. Microw Opt Tech Lett 55(6):1430–1434

    Article  Google Scholar 

  • Zobel OJ (1923) Theory and design of uniform and composite electric wave-filters. Bell Syst Tech J 2(1):1–46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. Antoniades .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Antoniades, M.A., Mirzaei, H., Eleftheriades, G.V. (2016). Transmission-Line Based Metamaterials in Antenna Engineering. In: Chen, Z., Liu, D., Nakano, H., Qing, X., Zwick, T. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-44-3_21

Download citation

Publish with us

Policies and ethics