Skip to main content

Satellite Antennas on Vehicles

  • Reference work entry
  • First Online:
Handbook of Antenna Technologies

Abstract

The mobile reception of satellite services on vehicles places high demands on the antennas in many regards. Due to the high path loss because of the great distances, low signal levels are experienced on the ground.

The following chapter gives an overview on antennas which can be used for the mobile reception on vehicles. The main areas of application in this regard are systems for global positioning and for satellite radio services. At first an overview of the requirements on the antennas imposed by the different services is given. Thereafter some basic antenna types are discussed regarding their advantages and disadvantages as far as the reception of satellite services are concerned including dipole and ring structures. More advanced antenna designs are also presented which are specifically optimized for different satellite systems.

In reception scenarios with severe signal impairments like multipath propagation resulting in deep signal fades, a single antenna is not sufficient for satellite reception. The mechanisms which lead to these scenarios are shortly introduced followed by a discussion of antenna diversity techniques which are an effective means to reduce these impairments. Special consideration is given to scan-phase diversity which efficiently combines the advantages of a simple system design with high signal quality improvements. Measurements obtained in real fading scenarios are presented for single antenna as well as scan-phase diversity systems. They show that antenna diversity can significantly improve the audio availability in adverse reception scenarios compared to single antenna systems. Furthermore, diversity can even allow for using antenna mounting positions which are unsuitable for single antennas like the dashboard or single side mirrors while still outperforming a rooftop mounted standard antenna.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balanis C (2005) Antenna theory: analysis and design, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Barié D, Senega S, Reiter L, Lindenmeier S (2008) Concept studies of scanning and combined scan/phase antenna diversity systems for SDARS. Frequenz 62(9–10):257–261. doi:10.1515/FREQ.2008.62.9-10.257.

    Google Scholar 

  • Barié D, Reiter L, Lindenmeier S (2010) Fast switched diversity for optimization of S-band SDARS reception. In: Wireless Technology conference (EuWIT), 2010 European, pp 45–48

    Google Scholar 

  • Brennan D (1959) Linear diversity combining techniques. Proc IRE 47(6):1075–1102

    Article  Google Scholar 

  • Briskman R, Prevaux R (2004) S-DARS broadcast from inclined, elliptical orbits. Acta Astronaut 54(7):503–518

    Article  Google Scholar 

  • Davarian F (2002) Sirius satellite radio: radio entertainment in the sky. In: 2002 I.E. aerospace conference, vol 3, pp 1031–1035

    Google Scholar 

  • ETSI (2010a) Satellite Earth Stations and Systems (SES); Satellite Digital Radio (SDR) systems; part 1: physical layer of the radio interface; sub-part 1: outer physical layer. (ETSI European standard EN 302 550-1-1)

    Google Scholar 

  • ETSI (2010b) Satellite Earth Stations and Systems (SES); Satellite Digital Radio (SDR) systems; part 1: physical layer of the radio interface; sub-part 2: inner physical layer single carrier modulation. (ETSI European standard EN 302 550-1-2)

    Google Scholar 

  • ETSI (2010c) Satellite Earth Stations and Systems (SES); Satellite Digital Radio (SDR) systems; part 1: physical layer of the radio interface; sub-part 3: inner physical layer multi carrier modulation. (ETSI European standard EN 302 550-1-3)

    Google Scholar 

  • Haller N (2001) Mobile antennas for reception of S-DARS. In: Antennas and Propagation Society international symposium, 2001 (APSURSI), vol 1, pp 426–429

    Google Scholar 

  • Hegarty C, Chatre E (2008) Evolution of the global navigation satellite system (GNSS). Proc IEEE 96(12):1902–1917. doi:10.1109/JPROC.2008.2006090

    Article  Google Scholar 

  • Herscovici N, Sipus Z, Bonefacic D (2003) Circularly polarized single-fed wide-band microstrip patch. IEEE Trans Antennas Propag 51(6):1277–1280. doi:10.1109/TAP.2003.812241

    Article  Google Scholar 

  • Kammerer J, Lindenmeier S (2011) A compact car antenna with high efficiency for reception of HEO- and GEO-satellite signals. In: Antennas and Propagation Society international symposium, 2011 (APSURSI), pp 1205–1206

    Google Scholar 

  • Kammerer J, Lindenmeier S (2012) A new compact antenna combination with high efficiency for reception of SDARS- and GPS signals. In: Antennas and Propagation Society international symposium, 2012 (APSURSI), pp 1–2

    Google Scholar 

  • Kammerer J, Lindenmeier S (2013a) Invisible antenna combination embedded in the roof of a car with high efficiency for reception of SDARS – and GPS – signals. In: Antennas and Propagation Society international symposium, 2013 (APSURSI), pp 2075–2076

    Google Scholar 

  • Kammerer J, Lindenmeier S (2013b) Invisible antenna embedded in the roof of a car with high efficiency for reception of satellite digital audio radio services (SDARS). In: Antennas and Propagation (EUCAP), 2013 7th European conference on, pp 1609–1611

    Google Scholar 

  • Kammerer J, Reiter L, Lindenmeier S (2012) Automotive hexband antenna for AM/FM/GPS/SDARS and AMPS/PCS1900 cell phone in an only 65 mm high housing. In: Radio and Antenna Days of the Indian Ocean (RADIO 2012). IOP conference series: materials science and engineering, vol 44

    Google Scholar 

  • Lindenmeier S (2007) Antenna diversity for the improvement of satellite radio reception in fading scenario. Inaugural session. In: International conference on wave propagation in communication, microwave systems and navigation, Chemnitz

    Google Scholar 

  • Lindenmeier S, Luy J, Russer P (2001) A multifunctional antenna for terrestrial and satellite radio applications. In: 2001 I.E. MTT-S international microwave symposium digest (Cat. No.01CH37157). IEEE, pp 393–396

    Google Scholar 

  • Lindenmeier H, Hopf J, Reiter L, Daginnus M, Kronberger R (2002a) A new design principle for a low profile SDARS-antenna including the option for antenna-diversity and multiband application. SAE International, Warrendale

    Book  Google Scholar 

  • Lindenmeier S, Olbrich G, Luy J, Russer P (2002b) A five-band antenna for terrestrial and satellite radio services. In: Proceedings of the XXVIIth General Assembly of the International Union of Radio Science, 1109–1112

    Google Scholar 

  • Lindenmeier S, Reiter L, Barié D, Hopf J (2007) Antenna diversity for improving the BER in mobile digital radio reception especially in areas with dense foliage. In: Antennas, 2007. INICA ‘07. 2nd international ITG conference on, pp 45–48

    Google Scholar 

  • Lindenmeier S, Barie D, Reiter L, Hopf J, Senega S (2008) Novel combined scan-phase antenna diversity system for SDARS. In: Antennas and Propagation Society international 2008, pp 1–4

    Google Scholar 

  • Lindenmeier S, Reiter L, Kammerer J, Senega S (2013) Antenna technology for mobile satellite radio reception. In: Antenna Technology (iWAT), 2013 international workshop on, pp 163–166

    Google Scholar 

  • Müller D (2010) Kompakte Diversity-Antennen für den mobilen Empfang von Satellitensignalen. Dissertation, Universität der Bundeswehr München, Fakultät für Elektrotechnik und Informationstechnik

    Google Scholar 

  • Müller D, Hopf J, Lindenmeier S (2009) A cavity-backed thin combined slot-dipole antenna for mobile reception of satellite signals in automotive applications. In: Antennas and Propagation Society international symposium, 2009 (APSURSI), pp 1–4

    Google Scholar 

  • Müller D, Senega S, Lindenmeier S (2010a) Compact 3-antenna diversity set for HEO and GEO satellite systems with terrestrial repeaters. In: Antennas and Propagation Society international symposium, 2010 (APSURSI), pp 1–4

    Google Scholar 

  • Müller D, Senega S, Lindenmeier S (2010b) Novel 2-antenna diversity set for SDARS reception in GEO and HEO satellite systems. In: Wireless Technology Conference (EuWIT), 2010 European, pp 169–172

    Google Scholar 

  • Nasimuddin, Esselle, Verma (2007) Wideband circularly polarized stacked microstrip antennas. Antennas Wirel Propag Lett 6(11):21–24. doi:10.1109/LAWP.2006.890749

    Google Scholar 

  • Parsons J, Henze M, Ratliff P, Withers M (1975) Diversity techniques for mobile radio reception. Radio Electronic Eng 45(7):357–367

    Article  Google Scholar 

  • Patsiokas S (2001) XM satellite radio technology fundamentals. SAE International, Warrendale

    Book  Google Scholar 

  • Pozar D, Duffy S (1997) A dual-band circularly polarized aperture-coupled stacked microstrip antenna for global positioning satellite. IEEE Trans Antennas Propag 45(11):1618–1625. doi:10.1109/8.650073

    Article  Google Scholar 

  • Reding V (2007) Commission decision of 14 February 2007 on the harmonised use of radio spectrum in the 2 GHz frequency bands for the implementation of systems providing mobile satellite services. Off J Eur Union L 43(C(2007) 409):32–34

    Google Scholar 

  • Reding V (2009) Commission Decision of 13 May 2009 on the selection of operators of pan-European systems providing mobile satellite services (MSS). Off J Eur Union L 149(C(2009) 3746):65–68

    Google Scholar 

  • Saala G, Lindenmeier S (2010) Compact circular polarized antenna for mobile reception of radio signals transmitted by geostationary satellites. In: Microwave Conference (EuMC), 2010 European, pp 1465–1468

    Google Scholar 

  • Saala G, Hopf J, Lindenmeier S (2009) Small satellite car antenna for simultaneous reception of LHCP and RHCP signals. In: European Conference on Antennas and Propagation EuCAP 2009. Proceedings: Estrel Convention Center, Berlin, 23–27 Mar 2009. VDE Verlag, Berlin, pp 2698–2700

    Google Scholar 

  • Saala G, Müller D, Hopf J, Lindenmeier S (2010) Antenna with optimized pattern for simultaneous reception of terrestrial signals and signals of geostationary satellites. Adv Radio Sci 8:37–42

    Article  Google Scholar 

  • Sallam H, Abdel Nabi T, Soumagne J (2008) A GEO satellite system for broadcast audio and multimedia services targeting mobile users in Europe. In: Advanced satellite mobile systems, 2008, vol 4, pp 134–139

    Google Scholar 

  • Senega S (2013) Mehrdienstfähiges Antennendiversity für den mobilen Satellitenrundfunkempfang. Dissertation, Universität der Bundeswehr München, Fakultät für Elektrotechnik und Informationstechnik

    Google Scholar 

  • Senega S, Lindenmeier S (2011) A fast switching antenna diversity system for improved mobile reception of digital radio signals of a geostationary satellite. In: Antennas and Propagation (EUCAP), proceedings of the 5th European conference on, pp 262–264

    Google Scholar 

  • Senega S, Lindenmeier S (2012) Antenna module with integrated scan-phase antenna diversity system for SDARS. In: Antennas and Propagation (EUCAP), 2012 6th European conference on, pp 2807–2810

    Google Scholar 

  • Senega S, Müller D, Barie D, Reiter L, Hopf J, Lindenmeier S (2009) Investigation on the combination of a scan/phase antenna diversity system with a novel diversity antenna set. In: Antennas and Propagation Society international symposium, 2009 (APSURSI), pp 1–4

    Google Scholar 

  • Senega S, Müller D, Reiter L, Lindenmeier S (2010) A fast-switching diversity- and beam-forming-circuit for S-band satellite reception in fading scenarios. In: Microwave conference (EuMC), 2010 European, pp 648–651

    Google Scholar 

  • Senega S, Kammerer J, Lindenmeier S (2014) Scan-phase antenna diversity for digital satellite radio (SDARS) in a single automotive side mirror. In: 2014 8th European Conference on Antennas and Propagation (EuCAP), pp 3255–3259

    Google Scholar 

  • Sharma P, Gupta K (1983) Analysis and optimized design of single feed circularly polarized microstrip antennas. IEEE Trans Antennas Propag 31(6):949–955. doi:10.1109/TAP.1983.1143162

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Lindenmeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Lindenmeier, S., Senega, S. (2016). Satellite Antennas on Vehicles. In: Chen, Z., Liu, D., Nakano, H., Qing, X., Zwick, T. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-44-3_101

Download citation

Publish with us

Policies and ethics