Integrating EEG Modality in Serious Games for Rehabilitation of Mental Patients

  • Chun Siong Lee
  • Chee Kong Chui
  • Cuntai Guan
  • Pui Wai Eu
  • Bhing Leet Tan
  • Joseph Jern-Yi Leong
Part of the Gaming Media and Social Effects book series (GMSE)


In order to develop an effective autonomous rehabilitative training solution with serious games for use with occupational therapy of mental patients, the authors postulate that a solution could come from combining human performance engineering with cognitive science. Conventional physical task performance metrics are insufficient in assessing the overall performance of the mental patients. Ideally, the mental state of the subject should be assessed in conjunction with the motor performance in order to better evaluate the rehabilitation progress of mental patients. In order to observe and evaluate the mental state of the subjects, noninvasive scalp EEG was used. The EEG readings were then analyzed using Lempel–Ziv complexity (LZC) and spectral analysis. The objective of this study is to compare task performance against the corresponding EEG analysis that enables the identification of possible neural markers for gauging mental activity pertinent to the mastery of simple tasks. Results identify that LZC values and activity in the theta and low alpha frequency band of the spectral analysis in the central, occipital, and parietal regions can possibly be used as the neural markers.


EEG  Serious games Rehabilitation Mental patients 


  1. Abásolo D, Hornero R, Gómez C, García M, López M (2006) Analysis of EEG background activity in Alzheimer’s disease patients with Lempel–Ziv complexity and central tendency measure. Med Eng Phys 28(4):315–322. doi: 10.1016/j.medengphy.2005.07.004 CrossRefGoogle Scholar
  2. Aftanas LI, Golocheikine SA (2001) Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neurosci Lett 310(1):57–60. doi: 10.1016/s0304-3940(01)02094-8 CrossRefGoogle Scholar
  3. Aftanas LI, Koshkarov VI, Pokrovskaja VL, Lotova NV, Mordvintsev YN (1996) Pre- and post-stimulus processes in affective task and event-related desynchronization (ERD): do they discriminate anxiety coping styles? Int J Psychophysiol 24(3):197–212. doi: 10.1016/s0167-8760(96)00060-8 CrossRefGoogle Scholar
  4. Chen X, Kwong S, Li M (2000) A compression algorithm for DNA sequences and its applications in genome comparison. Paper presented at the proceedings of the fourth annual international conference on computational molecular biology, Tokyo, JapanGoogle Scholar
  5. Gusev VD, Nemytikova LA (1999) On the complexity measures of genetic sequences. Bioinformatics 15(12):994–999Google Scholar
  6. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21. doi: 10.1016/j.jneumeth.2003.10.009 CrossRefGoogle Scholar
  7. Doppelmayr M, Klimesch W, Stadler W, Pöllhuber D, Heine C (2002) EEG alpha power and intelligence. Intell 30(3):289–302. doi: 10.1016/s0160-2896(01)00101-5 CrossRefGoogle Scholar
  8. Ferenets R, Tarmo L, Anier A, Jantti V, Melto S, Hovilehto S (2006) Comparison of entropy and complexity measures for the assessment of depth of sedation. IEEE Trans Biomed Eng 53(6):1067–1077. doi: 10.1109/tbme.2006.873543 CrossRefGoogle Scholar
  9. Fernández T, Harmony T, Rodríguez M, Bernal J, Silva J, Reyes A, Marosi E (1995) EEG activation patterns during the performance of tasks involving different components of mental calculation. Electroencephalogr Clin Neurophysiol 94(3):175–182. doi: 10.1016/0013-4694(94)00262-j CrossRefGoogle Scholar
  10. Fitts PM, Posner MI (1967) Human Performance. Brooks Cole, BelmontGoogle Scholar
  11. Friel PN (2007) EEG biofeedback in the treatment of attention deficit/hyperactivity disorder. Altern Med Rev 12(2):6Google Scholar
  12. Hong J, Li X, Xu F, Jiang Y, Li X (2012) The mental workload judgement in visual cognition under multitask meter scheme. Int J Phys Sci 7(5):787–796. doi: 10.5897/IJPS11.1372 Google Scholar
  13. Ishihara T, Yoshii N (1972) Multivariate analytic study of EEG and mental activity in Juvenile delinquents. Electroencephalogr Clin Neurophysiol 33(1):71–80. doi: 10.1016/0013-4694(72)90026-0 CrossRefGoogle Scholar
  14. Ishii R, Shinosaki K, Ukai S, Inouye T, Ishihara T, Yoshimine T, Hirabuki N, Asada H, Kihara T, Robinson SE, Takeda M (1999) Medial prefrontal cortex generates frontal midline theta rhythm. NeuroReport 10(4):675–679CrossRefGoogle Scholar
  15. Jensen O, Tesche CD (2002) Frontal theta activity in humans increases with memory load in a working memory task. Eur J Neurosci 15(8):1395–1399. doi: 10.1046/j.1460-9568.2002.01975.x CrossRefGoogle Scholar
  16. Jing H, Jianbo G, Principe JC (2006) Analysis of biomedical signals by the Lempel-Ziv complexity: the effect of finite data size. IEEE Trans Biomed Eng 53(12):2606–2609CrossRefGoogle Scholar
  17. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29(2–3):169–195CrossRefGoogle Scholar
  18. Klimesch W, Doppelmayr M, Pachinger T, Ripper B (1997a) Brain oscillations and human memory: EEG correlates in the upper alpha and theta band. Neurosci Lett 238(1–2):9–12. doi: 10.1016/s0304-3940(97)00771-4 CrossRefGoogle Scholar
  19. Klimesch W, Doppelmayr M, Schimke H, Ripper B (1997b) Theta synchronization and alpha desynchronization in a memory task. Psychophysiology 34(2):169–176. doi: 10.1111/j.1469-8986.1997.tb02128.x CrossRefGoogle Scholar
  20. Klimesch W, Doppelmayr M, Schwaiger J, Auinger P, Winkler T (1999) ‘Paradoxical’ alpha synchronization in a memory task. Cogn Brain Res 7(4):493–501CrossRefGoogle Scholar
  21. Klimesch W, Freunberger R, Sauseng P, Gruber W (2008) A short review of slow phase synchronization and memory: evidence for control processes in different memory systems? Brain Res 1235:31–44. doi: 10.1016/j.brainres.2008.06.049 CrossRefGoogle Scholar
  22. Klimesch W, Schimke H, Pfurtscheller G (1993) Alpha frequency, cognitive load and memory performance. Brain Topogr 5(3):241–251. doi: 10.1007/bf01128991 CrossRefGoogle Scholar
  23. Klimesch W, Schimke H, Schwaiger J (1994) Episodic and semantic memory: an analysis in the EEG theta and alpha band. Electroencephalogr Clin Neurophysiol 91(6):428–441. doi: 10.1016/0013-4694(94)90164-3 CrossRefGoogle Scholar
  24. Kubota Y, Sato W, Toichi M, Murai T, Okada T, Hayashi A, Sengoku A (2001) Frontal midline theta rhythm is correlated with cardiac autonomic activities during the performance of an attention demanding meditation procedure. Cogn Brain Res 11(2):281–287CrossRefGoogle Scholar
  25. Lempel A, Ziv J (1976) On the complexity of finite sequences. IEEE Trans Inf Theory 22(1):75–81. doi: 10.1109/tit.1976.1055501 MathSciNetCrossRefMATHGoogle Scholar
  26. Li X, Hu B, Zhu T, Yan J, Zheng F (2009) Towards affective learning with an EEG feedback approach. Paper presented at the proceedings of the first ACM international workshop on multimedia technologies for distance learning, Beijing, ChinaGoogle Scholar
  27. Li Y, Tong S, Liu D, Gai Y, Wang X, Wang J, Qiu Y, Zhu Y Abnormal EEG complexity in patients with schizophrenia and depression Clinical Neurophysiol: Official J Int Fed Clin Neurophysiol 119(6):1232–1241Google Scholar
  28. Medendorp WP, Goltz HC, Vilis T, Crawford JD (2003) Gaze-centered updating of visual space in human parietal cortex. J Neurosci 23(15):6209–6214Google Scholar
  29. Monastra VJ, Lynn S, Linden M, Lubar JF, Gruzelier J, LaVaque TJ (2005) Electroencephalographic biofeedback in the treatment of attention-deficit/hyperactivity disorder. Appl Psychophysiol Biofeedback 30(2):95–114. doi: 10.1007/s10484-005-4305-x CrossRefGoogle Scholar
  30. Nagarajan R (2002) Quantifying physiological data with Lempel-Ziv complexity-certain issues. IEEE Trans Biomed Eng 49(11):1371–1373. doi: 10.1109/tbme.2002.804582 CrossRefGoogle Scholar
  31. Raghavachari S, Kahana MJ, Rizzuto DS, Caplan JB, Kirschen MP, Bourgeois B, Madsen JR, Lisman JE (2001) Gating of human theta oscillations by a working memory task. J Neurosci 21(9):3175–3183Google Scholar
  32. Shumway-Cook A, Woollacott MH (2007) Motor control : translating research into clinical practice, 3rd edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  33. Zhang L-Y, Zheng C-X (2009) Lempel-Ziv complexity changes and physiological mental fatigue level during different mental fatigue state with spontaneous EEG. Health 1(1):35Google Scholar
  34. Zhang XS, Roy RJ, Jensen EW (2001) EEG complexity as a measure of depth of anesthesia for patients. IEEE Trans Biomed Eng 48(12):1424–1433. doi: 10.1109/10.966601 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2014

Authors and Affiliations

  • Chun Siong Lee
    • 1
  • Chee Kong Chui
    • 1
  • Cuntai Guan
    • 2
  • Pui Wai Eu
    • 3
  • Bhing Leet Tan
    • 3
  • Joseph Jern-Yi Leong
    • 3
  1. 1.National University of SingaporeSingaporeSingapore
  2. 2.Institute for Infocomm ResearchSingaporeSingapore
  3. 3.Institute of Mental HealthSingaporeSingapore

Personalised recommendations