Advertisement

Summary and Outlook

  • Emily S. C. ChingEmail author
Chapter
  • 757 Downloads
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

The Rayleigh-Bénard convection system consists of a closed cell of fluid heated from below and cooled from above. Turbulent Rayleigh-Bénard convection is a fundamental problem of great research interest. In this monograph, we have discussed Rayleigh-Bénard convection exclusively in the Oberbeck-Boussinesq approximation, and focused on two issues of interest. The first issue is the characterization and understanding of the statistics of the velocity and temperature fluctuations in the system. The second issue is the revelation and understanding of the nature of the scaling behavior of the velocity and temperature structure functions.

Keywords

Turbulent Kinetic Energy Direct Numerical Simulation Temperature Fluctuation Buoyant Force Thermal Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E.S.C. Ching, H. Guo, X.D. Shang et al., Extraction of plumes in turbulent thermal convection. Phys. Rev. Lett. 93, 124501 (2004)CrossRefGoogle Scholar
  2. 2.
    C. Sun, Q. Zhou, K.-Q. Xia, Cascades of velocity and temperature fluctuations in buoyancy-driven thermal turbulence. Phys. Rev. Lett. 97, 144504 (2006)CrossRefGoogle Scholar
  3. 3.
    Z.-S. She, E. Leveque, Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336–339 (1994)CrossRefGoogle Scholar
  4. 4.
    G. Ruiz-Chavarria, C. Baudeta, S. Ciliberto, Scaling laws and dissipation scale of a passive scalar in fully developed turbulence. Physica. D 99, 369–380 (1996)Google Scholar
  5. 5.
    R.J.P. Kunnen, H.J.H. Clercx, B.J. Geurts et al., A numerical and experimental investigation of structure function scaling in turbulent Rayleigh-Bénard convection. Phys. Rev. E 77, 016302 (2008)Google Scholar
  6. 6.
    E.S.C. Ching, Y.K. Tsang, T.N. Fok et al., Scaling behavior in turbulent Rayleigh-Bénard convection revealed by conditional structure functions. Phys. Rev. E 87, 013005 (2013)Google Scholar
  7. 7.
    V. Borue, S.A. Orszag, Turbulent convection driven by a constant temperature gradient. J. Sci. Comput. 12, 305–351 (1995)CrossRefGoogle Scholar
  8. 8.
    L. Biferale, E. Calzavarini, F. Toschi, R. Tripiccione, Universality of anisotropic fluctuations from numerical simulations of turbulent flows. Europhys. Lett. 64, 461–467 (2003)CrossRefGoogle Scholar
  9. 9.
    E.S.C. Ching, T.C. Ko, Ultimate-state scaling in a shell model for homogeneous turbulent convection. Phys. Rev. E 78, 036309 (2008)CrossRefGoogle Scholar
  10. 10.
    A. Celani, T. Matsumoto, A. Mazzino, M. Vergassola, Scaling and universality in turbulent convection. Phys. Rev. Lett. 88, 054503 (2002)CrossRefGoogle Scholar
  11. 11.
    J. Zhang, X.L. Wu, Velocity Intermittency in a buoyancy subrange in a two-dimensional soap film convection experiment. Phys. Rev. Lett. 94, 234501 (2005)CrossRefGoogle Scholar
  12. 12.
    F. Seychelles, Y. Amarouchene, M. Bessafi, H. Kellay, Thermal convection and emergence of isolated vortices in soap bubbles. Phys. Rev. Lett. 100, 144501 (2008)CrossRefGoogle Scholar
  13. 13.
    F. Seychelles, F. Ingremeau, C. Pradere, H. Kellay, From intermittent to nonintermittent behavior in two dimensional thermal convection in a Soap Bubble. Phys. Rev. Lett. 105, 264502 (2010)CrossRefGoogle Scholar
  14. 14.
    G. Boffetta, F. De Lillo, A. Mazzino, S. Musacchio, Bolgiano scale in confined Rayleigh-Taylor turbulence. J. Fluid Mech. 690, 426–440 (2012)zbMATHCrossRefGoogle Scholar
  15. 15.
    D. Lohse, K.-Q. Xia, Small-scale properties of turbulent Rayleigh-Béard convection. Annu. Rev. Fluid Mech. 42, 335–364 (2010)CrossRefGoogle Scholar
  16. 16.
    A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence (MIT Press, Cambridge, Massachusetts, 1975)Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of PhysicsThe Chinese University of Hong KongHong KongHong Kong SAR

Personalised recommendations