Observed Scaling Behavior

  • Emily S. C. ChingEmail author
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


We first introduce the local Bolgiano length, which depends on the vertical coordinate as a result of the inhomogeneity of the system. Based on the local Bolgiano length evaluated in numerical calculations, K41-OC scaling is expected in the central region and BO scaling is expected to exist only near the top and bottom plates. Then we discuss the experimentally observed scaling behavior in the central region, which has been reviewed in [1]. Next, we discuss the more recent analysis of the conditional temperature structure functions using experimental measurements at the bottom plate. We show that the experimental results are consistent with the theoretical expectations.


Local Bolgiano length Conditional structure functions 


  1. 1.
    D. Lohse, K.-Q. Xia, Small-scale properties of turbulent Rayleigh-Béard convection. Annu. Rev. Fluid Mech. 42, 335–364 (2010)CrossRefGoogle Scholar
  2. 2.
    R. Benzi, F. Toschi, R. Tripiccione, On the heat transfer in Rayleigh-Bénard systems. J. Stat. Phys. 93, 901–918 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    E. Calzavarini, F. Toschi, R. Tripiccione, Evidences of Bolgiano-Obhukhov scaling in three-dimensional Rayleigh-Bénard convection. Phys. Rev. E 66, 016304 (2002)CrossRefGoogle Scholar
  4. 4.
    R.J.P. Kunnen, H.J.H. Clercx, B.J. Geurts et al., A numerical and experimental investigation of structure function scaling in turbulent Rayleigh-Bénard convection. Phys. Rev. E 77, 016302 (2008)CrossRefGoogle Scholar
  5. 5.
    S. Grossmann, D. Lohse, Scaling in thermal convection: a unifying view. J. Fluid. Mech. 407, 27–56 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    X.-Z. Wu, L. Kadanoff, A. Libchaber, M. Sano, Frequency power spectrum of temperature fluctuations in free convection. Phys. Rev. Lett. 64, 2140–2143 (1990)CrossRefGoogle Scholar
  7. 7.
    S. Ashkenazi, V. Steinberg, Spectra and statistics of velocity and temperature fluctuations in turbulent convection. Phys. Rev. Lett. 83, 4760–4763 (1999)CrossRefGoogle Scholar
  8. 8.
    J.J. Niemala, L. Skrbek, K.R. Sreenivasan, R.J. Donnelly, Turbulent convection at very high Rayleigh numbers. Nature (London) 404, 837–840 (2000)CrossRefGoogle Scholar
  9. 9.
    S.-Q. Zhou, K.-Q. Xia, Scaling properties of the temperature field in convective turbulence. Phys. Rev. Lett. 87, 064501 (2001)CrossRefGoogle Scholar
  10. 10.
    X.-D. Shang , K.-Q. Xia, Scaling of the velocity power spectra in turbulent thermal convection. Phys. Rev. E 64, 065301(R) (2001)Google Scholar
  11. 11.
    G.I. Taylor, The spectrum of turbulence. Proc. R. Soc. Lond. A 164, 476–490 (1938)CrossRefGoogle Scholar
  12. 12.
    E.S.C. Ching, K.W. Chui, X.-D. Shang et al., Velocity and temperature cross-scaling in turbulent thermal convection. J. Turbul. 5, 27 (2004)CrossRefGoogle Scholar
  13. 13.
    C. Sun, Q. Zhou, K.-Q. Xia, Cascades of velocity and temperature fluctuations in buoyancy-driven thermal turbulence. Phys. Rev. Lett. 97, 144504 (2006)CrossRefGoogle Scholar
  14. 14.
    Z.-S. She, E. Leveque, Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336–339 (1994)CrossRefGoogle Scholar
  15. 15.
    G. Ruiz-Chavarria, C. Baudeta, S. Ciliberto, Scaling laws and dissipation scale of a passive scalar in fully developed turbulence. Phys. D 99, 369–380 (1996)zbMATHCrossRefGoogle Scholar
  16. 16.
    R. Benzi, S. R. Ciliberto, R. Tripiccione et al., Extended self-similarity in turbulent flows. Phys. Rev. E 48, R29–R32 (1993)Google Scholar
  17. 17.
    D. Lohse, Temperature spectra in shear flow and thermal convection. Phys. Lett. A 196, 70–75 (1994)CrossRefGoogle Scholar
  18. 18.
    E.S.C. Ching, Y.K. Tsang, T.N. Fok et al., Scaling behavior in turbulent Rayleigh-Bénard convection revealed by conditional structure functions. Phys. Rev. E 87, 013005 (2013)CrossRefGoogle Scholar
  19. 19.
    X. He, P. Tong, Measurements of the thermal dissipation field in turbulent Rayleigh-Bénard convection. Phys. Rev. E 79, 026306 (2009)CrossRefGoogle Scholar
  20. 20.
    X. He, P. Tong, E.S.C. Ching, Statistics of the locally-averaged thermal dissipation rate in turbulent Rayleigh-Bénard convection. J. Turbul. 11, 1 (2010)Google Scholar
  21. 21.
    X. He, E.S.C. Ching, P. Tong, Locally averaged thermal dissipation rate in turbulent thermal convection: a decomposition into contributions from different temperature gradient components. Phys. Fluids 23, 025106 (2011)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of PhysicsThe Chinese University of Hong KongHong KongHong Kong SAR

Personalised recommendations