Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 959 Accesses

Abstract

We first introduce the local Bolgiano length, which depends on the vertical coordinate as a result of the inhomogeneity of the system. Based on the local Bolgiano length evaluated in numerical calculations, K41-OC scaling is expected in the central region and BO scaling is expected to exist only near the top and bottom plates. Then we discuss the experimentally observed scaling behavior in the central region, which has been reviewed in [1]. Next, we discuss the more recent analysis of the conditional temperature structure functions using experimental measurements at the bottom plate. We show that the experimental results are consistent with the theoretical expectations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Lohse, K.-Q. Xia, Small-scale properties of turbulent Rayleigh-Béard convection. Annu. Rev. Fluid Mech. 42, 335–364 (2010)

    Article  Google Scholar 

  2. R. Benzi, F. Toschi, R. Tripiccione, On the heat transfer in Rayleigh-Bénard systems. J. Stat. Phys. 93, 901–918 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Calzavarini, F. Toschi, R. Tripiccione, Evidences of Bolgiano-Obhukhov scaling in three-dimensional Rayleigh-Bénard convection. Phys. Rev. E 66, 016304 (2002)

    Article  Google Scholar 

  4. R.J.P. Kunnen, H.J.H. Clercx, B.J. Geurts et al., A numerical and experimental investigation of structure function scaling in turbulent Rayleigh-Bénard convection. Phys. Rev. E 77, 016302 (2008)

    Article  Google Scholar 

  5. S. Grossmann, D. Lohse, Scaling in thermal convection: a unifying view. J. Fluid. Mech. 407, 27–56 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. X.-Z. Wu, L. Kadanoff, A. Libchaber, M. Sano, Frequency power spectrum of temperature fluctuations in free convection. Phys. Rev. Lett. 64, 2140–2143 (1990)

    Article  Google Scholar 

  7. S. Ashkenazi, V. Steinberg, Spectra and statistics of velocity and temperature fluctuations in turbulent convection. Phys. Rev. Lett. 83, 4760–4763 (1999)

    Article  Google Scholar 

  8. J.J. Niemala, L. Skrbek, K.R. Sreenivasan, R.J. Donnelly, Turbulent convection at very high Rayleigh numbers. Nature (London) 404, 837–840 (2000)

    Article  Google Scholar 

  9. S.-Q. Zhou, K.-Q. Xia, Scaling properties of the temperature field in convective turbulence. Phys. Rev. Lett. 87, 064501 (2001)

    Article  Google Scholar 

  10. X.-D. Shang , K.-Q. Xia, Scaling of the velocity power spectra in turbulent thermal convection. Phys. Rev. E 64, 065301(R) (2001)

    Google Scholar 

  11. G.I. Taylor, The spectrum of turbulence. Proc. R. Soc. Lond. A 164, 476–490 (1938)

    Article  Google Scholar 

  12. E.S.C. Ching, K.W. Chui, X.-D. Shang et al., Velocity and temperature cross-scaling in turbulent thermal convection. J. Turbul. 5, 27 (2004)

    Article  Google Scholar 

  13. C. Sun, Q. Zhou, K.-Q. Xia, Cascades of velocity and temperature fluctuations in buoyancy-driven thermal turbulence. Phys. Rev. Lett. 97, 144504 (2006)

    Article  Google Scholar 

  14. Z.-S. She, E. Leveque, Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336–339 (1994)

    Article  Google Scholar 

  15. G. Ruiz-Chavarria, C. Baudeta, S. Ciliberto, Scaling laws and dissipation scale of a passive scalar in fully developed turbulence. Phys. D 99, 369–380 (1996)

    Article  MATH  Google Scholar 

  16. R. Benzi, S. R. Ciliberto, R. Tripiccione et al., Extended self-similarity in turbulent flows. Phys. Rev. E 48, R29–R32 (1993)

    Google Scholar 

  17. D. Lohse, Temperature spectra in shear flow and thermal convection. Phys. Lett. A 196, 70–75 (1994)

    Article  Google Scholar 

  18. E.S.C. Ching, Y.K. Tsang, T.N. Fok et al., Scaling behavior in turbulent Rayleigh-Bénard convection revealed by conditional structure functions. Phys. Rev. E 87, 013005 (2013)

    Article  Google Scholar 

  19. X. He, P. Tong, Measurements of the thermal dissipation field in turbulent Rayleigh-Bénard convection. Phys. Rev. E 79, 026306 (2009)

    Article  Google Scholar 

  20. X. He, P. Tong, E.S.C. Ching, Statistics of the locally-averaged thermal dissipation rate in turbulent Rayleigh-Bénard convection. J. Turbul. 11, 1 (2010)

    Google Scholar 

  21. X. He, E.S.C. Ching, P. Tong, Locally averaged thermal dissipation rate in turbulent thermal convection: a decomposition into contributions from different temperature gradient components. Phys. Fluids 23, 025106 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily S. C. Ching .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Ching, E.S.C. (2014). Observed Scaling Behavior. In: Statistics and Scaling in Turbulent Rayleigh-Bénard Convection. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-4560-23-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-4560-23-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4560-22-1

  • Online ISBN: 978-981-4560-23-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics