Advertisement

Enhancing Physical-Layer Secrecy in Modern Wireless Communication Systems

  • Y.-W. Peter Hong
  • Pang-Chang Lan
  • C.-C. Jay Kuo
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

This chapter provides a brief survey of recent developments and applications of physical-layer secrecy techniques in modern wireless systems, such as cognitive radios, orthogonal frequency-division multiplexing (OFDM) systems, wireless ad hoc and multihop networks, and cellular networks. Some references to recent works in these areas are given and several challenging open problems are mentioned as potential research directions.

Keywords

Secrecy Cognitive radio  Orthogonal frequency-division multiplexing (OFDM) Ad hoc and multihop networks  Cellular networks 

References

  1. 1.
    Haykin S (2005) Govnitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun 23(2):201–213CrossRefGoogle Scholar
  2. 2.
    Wu Y, Liu KJ (2011) An information secrecy game in cognitive radio network. IEEE Trans Inf Forensics Secur 6(3):831–842CrossRefGoogle Scholar
  3. 3.
    Gabry F, Schrammar N, Girnyk M, Li N, Thobaben R, Rasmussen LK (2012) Cooperation for secure broadcasting in cognitive radio networks. In: Proceedings of IEEE International Conference on Communications, June 2012, pp 5613–5618Google Scholar
  4. 4.
    Tang X, Liu R, Spasojevic P, Poor HV (2011) Interference assisted secret communication. IEEE Trans Inf Theor 57(5):3153–3167MathSciNetCrossRefGoogle Scholar
  5. 5.
    Liang Y, Somekh-Baruch A, Poor HV, Shamai S, Verdu S (2009) Capacity of cognitive interference channels with and without secrecy. IEEE Trans Inf Theory 55(2):604–619Google Scholar
  6. 6.
    Pei Y, Liang Y-C, Zhang L, Teh KC, Li KH (2010) Secure communication over MISO cognitive radio channels. IEEE Trans Wireless Commun 9(4):1494–1502CrossRefGoogle Scholar
  7. 7.
    Pei Y, Liang Y-C, Teh KC, Li KH (2011) Secure communication in multiantenna cognitive radio networks with imperfect channel state information. IEEE Trans Signal Process 59(4):1683–1693Google Scholar
  8. 8.
    Li Z, Yates R, Trappe W (2006) Secrecy capacity of independent parallel channels. In: Proceedings of the 44th annual Allerton Conference on Communication, Control, and ComputingGoogle Scholar
  9. 9.
    Rodrigues MRD, Almeida PDM (2008) Filter design with secrecy constraints: the degraded parallel Gaussian wiretap channel. In: Proceeings of IEEE Global Communications Conference (GLOBECOM), December 2008Google Scholar
  10. 10.
    Kobayashi M, Debbah M, Shamai S (2009) Secured communication over frequency-selective fading channels: A practical Vandermonde precoding. EURASIP J Wireless Commun Netw 2009:1–19. In (2012), 2009(4):1354–1367Google Scholar
  11. 11.
    Renna F, Laurenti N, Poor HV (2012) Physical-layer Secrecy for OFDM transmissions over fading channels. IEEE Trans Inf Forensics Secur 7(4):1354–1367CrossRefGoogle Scholar
  12. 12.
    Wong CY, Cheng RS, Lataief KB, Murch RD (1999) Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE J Sel Areas Commun 17(10):1747–1758CrossRefGoogle Scholar
  13. 13.
    Jorswieck EA, Wolf A (2008) Resource allocation for the wire-tap multi-carrier broadcast channel. In: Proceedings of International Conference on Telecommunications (ICT)Google Scholar
  14. 14.
    Wang X, Tao M, Mo J, Xu Y (2011) Power and subcarrier allocation for physical-layer security in OFDMA-based broadband wireless networks. IEEE Trans Inf Forensics Secur 6(3):693–702CrossRefGoogle Scholar
  15. 15.
    Ng DWK, Lo ES, Schober R (2012) Energy-efficient resource allocation for secure OFDMA systems. IEEE Trans Veh Technol 61(6):2572–2585CrossRefGoogle Scholar
  16. 16.
    Jeong C, Kim I-M (2011) Optimal power allocation for secure multicarrier relay systems. IEEE Trans Signal Process 59(11):5428–5442MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ng DWK, Lo ES, Schober R (2011) Secure resource allocation and scheduling for OFDMA decode-and-forward relay networks. IEEE Trans Wireless Commun 10(10):3528–3540CrossRefGoogle Scholar
  18. 18.
    Royer EM, Toh C-K (1999) A review of current routing protocols for ad hoc mobile wireless networks. IEEE Pers Commun 6(2):46–55CrossRefGoogle Scholar
  19. 19.
    Goldsmith AJ, Wicker SB (2002) Design challenges for energy-constrained ad hoc wireless networks. IEEE Wirel Commun 9(4):8–27CrossRefGoogle Scholar
  20. 20.
    Ramanathan R, Redi J (2002) A brief overview of ad hoc networks: challenges and directions. IEEE Commun Mag 40(5):20–22CrossRefGoogle Scholar
  21. 21.
    Bashar S, Ding Z (2009) Optimum routing protection against cumulative eavesdropping in multihop wireless networks. In: Proceedings of the IEEE Military Communications Conference (MILCOM)Google Scholar
  22. 22.
    Saad W, Zhou X, Maham B, Basar T, Poor HV (2012) Tree formation with physical layer security considerations in wireless multi-hop networks. IEEE Trans Wireless Commun 11(10):3980–3991CrossRefGoogle Scholar
  23. 23.
    Haenggi M (2008) The secrecy graph and some of its properties. In: Proceedings of the IEEE International Symposium on Information Theory (ISIT), pp 539–543Google Scholar
  24. 24.
    Goel S, Aggarwal V, Yener A, Calderbank AR (2011) The effect of eavesdroppers on network connectivity: a secrecy graph approach. IEEE Trans Inf Forensics Secur 6(3):712–724CrossRefGoogle Scholar
  25. 25.
    Pinto PC, Barros J, Win MZ (2012) Secure communication in stochastic wireless networks-part I: connectivity. IEEE Trans Inf Forensics Secur 7(1):125–138CrossRefGoogle Scholar
  26. 26.
    Pinto PC, Barros J, Win MZ (2012) Secure communication in stochastic wireless networks-part II: maximum rate and collusion. IEEE Trans Inf Forensics Secur 7(1):139–147CrossRefGoogle Scholar
  27. 27.
    Liang Y, Poor HV, Ying L (2011) Secrecy throughput of MANETs under passive and active attacks. IEEE Trans Inf Theory 10(57):6692–6720MathSciNetCrossRefGoogle Scholar
  28. 28.
    Koyluoglu OO, Koksal CE, Gamal HE (2012) On secrecy capacity scaling in wireless networks. IEEE Trans Inf Theory 58(5):3000–3015CrossRefGoogle Scholar
  29. 29.
    Koksal CE, Ercetin O, Sarikaya Y (2013) Control of wireless networks with secrecy. IEEE/ACM Trans Netw 21(1):324–337CrossRefGoogle Scholar
  30. 30.
    Popovski p (2009) Wireless secrecy in cellular systems with infrastructure-aided cooperation. IEEE Trans Inf Forensics Secur 4(2):242–256CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Y.-W. Peter Hong
    • 1
  • Pang-Chang Lan
    • 2
  • C.-C. Jay Kuo
    • 3
  1. 1.Department of Electrical EngineeringNational Tsing Hua UniversityHsinchuTaiwan, R.O.C.
  2. 2.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations