Secrecy Precoding and Beamforming in Multi-Antenna Wireless Systems

  • Y.-W. Peter Hong
  • Pang-Chang Lan
  • C.-C. Jay Kuo
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


This chapter reviews various secrecy-enhancing signal processing techniques for data transmission in multi-antenna wireless systems. In particular, secrecy beamforming and precoding schemes are introduced as effective schemes to exploit the spatial degrees of freedom in multiple-input multiple-output (MIMO) systems. In these schemes, signals are directed towards spatial dimensions that yield large differences between the signal quality at the destination and that at the eavesdropper. The use of artificial noise (AN) or jamming signals is also introduced as a way to further degrade the eavesdropper’s reception (and, thus, more effectively enhance the signal quality difference between the two channels). The latter is especially useful when only partial knowledge of the eavesdropper’s channel is available at the source.


Multiple-input multiple output (MIMO) Beamforming  Precoding Artificial noise Secrecy 


  1. 1.
    Shafiee S, Liu N, Ulukus S (2009) Towards the secrecy capacity of the Gaussian MIMO wiretap channel: the 2–2-1 channel. IEEE Trans Inf Theory 55:4033–4039MathSciNetCrossRefGoogle Scholar
  2. 2.
    Khisti A, Wornell G (2010) Secure transmission with multiple antennas I: the MISOME wiretap channel. IEEE Trans Inf Theory 56(7):3088–3104MathSciNetCrossRefGoogle Scholar
  3. 3.
    Khisti A, Wornell G (2010) Secure transmission with multiple antennas. II. The MIMOME wiretap channel. IEEE Trans Inf Theory 56(11):5515–5532Google Scholar
  4. 4.
    Oggier F, Hassibi B (2011) The secrecy capacity of the MIMO wiretap channel. IEEE Trans Inf Theory 57(8):4961–4972MathSciNetCrossRefGoogle Scholar
  5. 5.
    Harville DA (2008) Matrix algebra from a statisticians perspective. Springer, BerlinGoogle Scholar
  6. 6.
    Golub G, Loan CFV (1996) Matrix computations, 3rd edn. The Johns Hopkins Univeristy Press, BaltimoreMATHGoogle Scholar
  7. 7.
    Paige CC, Saunders MA (Jun. 1981) Towards a generalized singular value decomposition. SIAM J Numer Anal 18(3):389–405MathSciNetCrossRefGoogle Scholar
  8. 8.
    Van Loan CF (Mar. 1976) Generalizing the singular value decomposition. SIAM J Numer Anal 13(1):76–83CrossRefMATHGoogle Scholar
  9. 9.
    Li J, Petropulu AP (2011) On beamforming solution for secrecy capacity of MIMO wiretap channels. In: Proceedings of IEEE Global Communications Conference (GLOBECOM) workshops, pp. 889–892Google Scholar
  10. 10.
    Bustin R, Liu R, Poor HV, Shamai (Shitz) S (2009) An MMSE approach to the secrecy capacity of the MIMO Gaussian wiretap channel. EURASIP J Wireless Commun NetwGoogle Scholar
  11. 11.
    Liang Y, Kramer G, Poor HV, Shamai (Shitz) S (2009) Compound wiretap channels. EURASIP J Wireless Commun NetwGoogle Scholar
  12. 12.
    Li Q, Ma W-K (2011) Optimal and robust transmit designs for MISO channel secrecy by semidefinite programming. IEEE Trans Signal Processing 59(8):3799–3812CrossRefGoogle Scholar
  13. 13.
    Li Q, Ma W-K (2011) Multicast secrecy rate maximization for MISO channels with multiple multi-antenna eavesdroppers. In: Proceedings of IEEE International Conference on Communications (ICC)Google Scholar
  14. 14.
    Lei J, Han Z, Vázquez-Castro MA, Hjørungnes A (2011) Secure satellite communication systems design with individual secrecy rate constraints. IEEE Trans Inf Forensics Secur 6(3):661–671CrossRefGoogle Scholar
  15. 15.
    Zheng G, Arapoglou P-D, Ottersten B (2012) Physical layer security in multibeam satellite systems. IEEE Trans Wireless Commun 11(2):852–862CrossRefGoogle Scholar
  16. 16.
    Hamming RW (1962) Numerical Methods for Scientists and Engineers. McGraw-Hill, New YorkMATHGoogle Scholar
  17. 17.
    Luo Z-Q, Ma W-K, So AM-C, Ye Y, Zhang S (May 2010) Semidefinite relaxation of quadratic optimization problems. IEEE Signal Processing Mag 27(3):20–34CrossRefGoogle Scholar
  18. 18.
    Charnes A, Cooper WW (1962) Programming with linear fractional functionals. Naval Res Logistics Quart 9:181–186MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Methods Softw 11–12:625–653. Version 1.05 available from
  20. 20.
    CVX Research, Inc. CVX: Matlab software for disciplined convex programming, version 2.0 beta, September 2012. Available
  21. 21.
    Sidiropoulos ND, Davidson TN, Luo Z-Q (2006) Transmit beamforming for physical-layer multicasting. IEEE Trans Signal Processing 54(6):2239–2251CrossRefGoogle Scholar
  22. 22.
    Csiszàr I, Körner J (1978) Broadcast channels with confidential messages. IEEE Trans Inf Theory 24(3):339–348CrossRefMATHGoogle Scholar
  23. 23.
    Liu R, Maric I, Spasojević P, Yates RD (2008) Discrete memoryless interference and broadcast channels with confidential messages—secrecy rate regions. IEEE Trans Inf Theory 54(6):1–14CrossRefGoogle Scholar
  24. 24.
    Liu R, Poor HV (2009) Secrecy capacity region of a multiple-antenna Gaussian broadcast channel with confidential messages. IEEE Trans Inf Theory 55(3):1235–1249Google Scholar
  25. 25.
    Tekin E, Yener A (2008) The Gaussian multiple access wire-tap channel. IEEE Trans Inf Theory 54(12):5747–5755MathSciNetCrossRefGoogle Scholar
  26. 26.
    Liang Y, Poor HV (2008) Multiple-access channels with confidential messages. IEEE Trans Inf Theory 54(3):976–1002MathSciNetCrossRefGoogle Scholar
  27. 27.
    Fakoorian SAA, Swindlehurst AL (2010) MIMO interference channel with confidential messages: game theoretic beamforming designs. In: Proceedings of 44th Signals, Systems, and Computers Conference, pp. 2099–2103Google Scholar
  28. 28.
    Geraci G, Egan M, Yuan J, Razi A, Collings IB (2012) Secrecy sum-rates for multi-user MIMO regularized channel inversion precoding. IEEE Trans Commun 60(11):3472–3482CrossRefGoogle Scholar
  29. 29.
    Goel S, Negi R (2008) Guaranteeing secrecy using artificial noise. IEEE Trans Wireless Commun 7(6):2180–2189CrossRefGoogle Scholar
  30. 30.
    Negi R, Goel S (2005) Secret communication using artificial noise. In: Proceedings of vehicular technology conference (VTC), vol 3, pp 1906–1910Google Scholar
  31. 31.
    Zhou X, McKay MR (2010) Secure transmission with artificial noise over fading channels: achievable rate and optimal power allocation. IEEE Trans Veh Technol 59(8):3831–3842CrossRefGoogle Scholar
  32. 32.
    Gao H, Smith PJ, Clark MV (1998) Theoretical reliability of MMSE linear diversity combining in Rayleigh-fading additive interference channels. IEEE Trans Commun 46(5):666–672CrossRefGoogle Scholar
  33. 33.
    Gradshteyn IS, Ryzhik IM (2007) Tables of integrals, series, and products, 7th edn. Dover, New YorkGoogle Scholar
  34. 34.
    Abramowitz M, Stegun IA (1974) Handbook of mathematical functions with formulaes, graphs, and mathematical tables. Dover, New YorkGoogle Scholar
  35. 35.
    Lin S-C, Chang T-H, Liang Y-L, Hong Y-WP, Chi C-Y (2011) On the impact of quantized channel feedback in guaranteeing secrecy with artificial noise: the noise leakage problem. IEEE Trans Wireless Commun 10(3):901–915CrossRefGoogle Scholar
  36. 36.
    Liao W-C, Chang T-H, Ma W-K, Chi C-Y (2011) QoS-based transmit beamforming in the presence of eavesdroppers: an optimized artificial-noise-aided approach. IEEE Trans Signal Processing 59(3):1202–1216MathSciNetCrossRefGoogle Scholar
  37. 37.
    Gerbracht S, Scheunert C, Jorswieck EA (2012) Secrecy outage in MISO systems with partial channel information. IEEE Trans Inf Forensics Secur 7(2):704–716CrossRefGoogle Scholar
  38. 38.
    Xiong J, Wong K-K, Ma D, Wei J (2012) A closed-form power allocation for minimizing secrecy outage probability for MISO wiretap channels via masked beamforming. IEEE Commun Lett 16(9):1496–1499CrossRefGoogle Scholar
  39. 39.
    Romero-Zurita N, Ghogho M, McLernon D (2012) Outage probability based power distribution between data and artificial noise for physical layer security. IEEE Signal Processing Lett 19(2):71–74CrossRefGoogle Scholar
  40. 40.
    Mukherjee A, Swindlehurst AL (2011) Robust beamforming for security in MIMO wiretap channels with imperfect CSI. IEEE Trans Signal Processing 59(1):351–361MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Y.-W. Peter Hong
    • 1
  • Pang-Chang Lan
    • 2
  • C.-C. Jay Kuo
    • 3
  1. 1.Department of Electrical EngineeringNational Tsing Hua UniversityHsinchuTaiwan, R.O.C.
  2. 2.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations