Background on Information-Theoretic Physical Layer Secrecy

  • Y.-W. Peter Hong
  • Pang-Chang Lan
  • C.-C. Jay Kuo
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

This chapter provides a brief overview of information-theoretic physical layer secrecy, including the fundamental limits and the key aspects that may affect the secrecy performance. The measure of secrecy as well as the notions of secrecy capacity and secrecy outage probability are introduced. Explicit expressions for the secrecy capacity and the secrecy outage probability are given for certain scenarios. These results motivate the development of the signal processing techniques to be introduced in later chapters.

Keywords

Wiretap channel Secrecy rate  Secrecy capacity Secrecy outage Channel code 

References

  1. 1.
    Wyner AD (1975) The wire-tap channel. Bell Syst Tech J 54(8):1355–1387MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Csiszàr I, Körner J (1978) Broadcast channels with confidential messages. IEEE Trans Inf Theory 24(3):339–348CrossRefMATHGoogle Scholar
  3. 3.
    Liu R, Maric I, Spasojević P, Yates RD (2008) Discrete memoryless interference and broadcast channels with confidential messages-secrecy rate regions. IEEE Trans Inf Theory 54(6):1–14CrossRefGoogle Scholar
  4. 4.
    Liang Y, Somekh-Baruch A, Poor HV, Shamai S, Verdu S (2009) Capacity of cognitive interference channels with and without secrecy. IEEE Trans Inf Theory 55(2):604–619MathSciNetCrossRefGoogle Scholar
  5. 5.
    Liu R, Poor HV (2009) Secrecy capacity region of a multiple-antenna gaussian broadcast channel with confidential messages. IEEE Trans Inf Theory 55(3):1235–1249MathSciNetCrossRefGoogle Scholar
  6. 6.
    Tekin E, Yener A (2008) The Gaussian multiple access wire-tap channel. IEEE Trans Inf Theory 54(12):5747–5755MathSciNetCrossRefGoogle Scholar
  7. 7.
    Liang Y, Poor HV (2008) Multiple-access channels with confidential messages. IEEE Trans Inf Theory 54(3):976–1002MathSciNetCrossRefGoogle Scholar
  8. 8.
    Liang Y, Poor HV, Shamai (Shitz) S (2008) Information theoretic security. Found Trends Commun Inf Theory 5(4–5):355–580 (Now Publishers, Hanover)Google Scholar
  9. 9.
    Thangaraj A, Dihidar S, Calderbank AR, McLaughlin SW, Merolla J-M (2007) Applications of LDPC codes to the wiretap channel. IEEE Trans Inf Theory 53(8):2933–2945MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mahdavifar H, Vardy A (2011) Achieving the secrecy capacity of wiretap channels using polar codes. IEEE Trans Inf Theory 57(10):6428–6443MathSciNetCrossRefGoogle Scholar
  11. 11.
    Klinc D, Ha J, McLaughlin SW, Barros J, Kwak B-J (2011) LDPC codes for the gaussian wiretap channel. IEEE Trans Inf Forensics Secur 6(3):532–540CrossRefGoogle Scholar
  12. 12.
    Leung-Yan-Cheong SK, Hellman ME (1978) The Gaussian wire-tap channel. IEEE Trans Inf Theory IT–24(4):451–456Google Scholar
  13. 13.
    Khisti A, Wornell G (2010) Secure transmission with multiple antennas I: the MISOME wiretap channel. IEEE Trans Inf Theory 56(7):3088–3104MathSciNetCrossRefGoogle Scholar
  14. 14.
    Khisti A, Wornell G (2010) Secure transmission with multiple antennas II: the MIMOME wiretap channel. IEEE Trans Inf Theory 56(11):5515–5532MathSciNetCrossRefGoogle Scholar
  15. 15.
    Oggier F, Hassibi B (2011) The secrecy capacity of the MIMO wiretap channel. IEEE Trans Inf Theory 57(8):4961–4972MathSciNetCrossRefGoogle Scholar
  16. 16.
    Bustin R, Liu R, Poor HV, Shamai (Shitz) S (2009) An MMSE approach to the secrecy capacity of the MIMO Gaussian wiretap channel. EURASIP J Wirel Commun NetwGoogle Scholar
  17. 17.
    Liang Y, Kramer G, Poor HV, Shamai (Shitz) S (2009) Compound wiretap channels. EURASIP J Wirel Commun Netw 2009:1–12Google Scholar
  18. 18.
    Liu T, Prabhakaran V, Vishwanath S (2008) The secrecy capacity of a class of parallel Gaussian compound wiretap channels. In: Proceedings of IEEE International Symposium on Information Theory (ISIT)Google Scholar
  19. 19.
    Liang Y, Poor HV, Shamai (Shitz) S (2008) Secure communication over fading channels. IEEE Trans Inf Theory 54(6):2470–2492Google Scholar
  20. 20.
    Gopala PK, Lai L, El Gamal H (2008) On the secrecy capacity of fading channels. IEEE Trans Inf Theory 54(10):4687–4698CrossRefMATHGoogle Scholar
  21. 21.
    Li J, Petropulu AP (2011) On ergodic secrecy rate for Gaussian MISO wiretap channels. IEEE Trans Wirel Commun 10(4):1176–1187CrossRefGoogle Scholar
  22. 22.
    Lin S-C, Lin P-H (2013) On secrecy capacity of fast fading multiple-input wiretap channels with statistical CSIT. IEEE Trans Inf Forensics Secur 8(2):414–419CrossRefGoogle Scholar
  23. 23.
    Bloch M, Barros J, Rodrigues MRD (2008) Wireless information-theoretic security. IEEE Trans Inf Theory 54(6):2515–2534MathSciNetCrossRefGoogle Scholar
  24. 24.
    Prabhu VU, Rodrigues MRD (2011) On wireless channels with M-antenna eavesdroppers: characterization of the outage probability and \(\epsilon \)-outage secrecy capacity. IEEE Trans Inf Forensics Secur 6(3):853–860CrossRefGoogle Scholar
  25. 25.
    Chrysikos T, Dagiuklas T, Kotsopoulos S (2009) A closed-form expression for outage secrecy capacity in wireless information-theoretic security. In: Lecture Notes of the Institute for Computer Sciences. Social Informatics and Telecommunications EngineeringGoogle Scholar
  26. 26.
    Gerbracht S, Scheunert C, Jorswieck EA (2012) Secrecy outage in MISO systems with partial channel information. IEEE Trans Inf Forensics Secur 7(2):704–716CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Y.-W. Peter Hong
    • 1
  • Pang-Chang Lan
    • 2
  • C.-C. Jay Kuo
    • 3
  1. 1.Department of Electrical EngineeringNational Tsing Hua UniversityHsinchuTaiwan, R.O.C.
  2. 2.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations