• Y.-W. Peter Hong
  • Pang-Chang Lan
  • C.-C. Jay Kuo
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


This chapter provides a brief introduction of security issues that may arise in wireless communication systems and describe physical layer techniques that can be used to address these issues. Different notions of physical layer secrecy are introduced, including keyless transmission of confidential messages (which is the focus of this book), channel-based secret key generation, and signal transmissions with low probability of interception and detection. Backgrounds on these techniques as well as an overview of the book content are provided.


Security Cryptography Physical layer secrecy  Secret key generation Low probability of interception (LPI) Low probability of detection (LPD). 


  1. 1.
    Lou W, Ren K (2009) Security, privacy, and accountability in wireless access networks. IEEE Wirel Commun 16(4):80–87CrossRefGoogle Scholar
  2. 2.
    Shiu Y-S, Chang S-Y, Wu H-C, Huang SC-H, Chen H-H (2011) Physical layer security in wireless networks: a tutorial. IEEE Wirel Commun 18(2):66–74CrossRefGoogle Scholar
  3. 3.
    Data Encryption Standard FIPS-46, National Bureau of Standards Std., Jan 1977Google Scholar
  4. 4.
    Advanced Encryption Standard FIPS-197, National Bureau of Standards and Technology Std., Nov 2001Google Scholar
  5. 5.
    Diffie W, Hellman ME (1976) New directions in cryptography. IEEE Trans Inf Theory IT-22(6):644–654Google Scholar
  6. 6.
    Schneier B (1998) Cryptographic design vulnerabilities. IEEE Comp 31(9):29–33CrossRefGoogle Scholar
  7. 7.
    Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-key cryptosystems. Commun ACM 21(2):120–126MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Wyner AD (1975) The wire-tap channel. Bell Syst Tech J 54(8):1355–1387MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Leung-Yan-Cheong SK, Hellman ME (1978) The gaussian wire-tap channel. IEEE Trans Inf Theory IT-24(4):451–456Google Scholar
  10. 10.
    Csiszàr I, Körner J (1978) Broadcast channels with confidential messages. IEEE Trans Inf Theory 24(3):339–348CrossRefMATHGoogle Scholar
  11. 11.
    Ren K, Su H, Wang Q (2011) Secret key generation exploiting channel characteristics in wireless communications. IEEE Wirel Commun 18(4):6–12CrossRefGoogle Scholar
  12. 12.
    Hero AO (2003) Secure space-time communication. IEEE Trans Inf Theory 49(12):3235–3249MathSciNetCrossRefGoogle Scholar
  13. 13.
    Liang Y, Poor HV, Shamai (Shitz) S (2008) Secure communication over fading channels. IEEE Trans Inf Theory 54(6):2470–2492Google Scholar
  14. 14.
    Gopala PK, Lai L, El Gamal H (2008) On the secrecy capacity of fading channels. IEEE Trans Inf Theory 54(10):4687–4698CrossRefMATHGoogle Scholar
  15. 15.
    Khisti A, Wornell G (2010) Secure transmission with multiple antennas I: the MISOME wiretap channel. IEEE Trans Inf Theory 56(7):3088–3104MathSciNetCrossRefGoogle Scholar
  16. 16.
    Khisti A, Wornell G (2010) Secure transmission with multiple antennas II: the MIMOME wiretap channel. IEEE Trans Inf Theory 56(11):5515–5532Google Scholar
  17. 17.
    Oggier F, Hassibi B (2011) The secrecy capacity of the MIMO wiretap channel. IEEE Trans Inf Theory 57(8):4961–4972MathSciNetCrossRefGoogle Scholar
  18. 18.
    Bustin R, Liu R, Poor HV, Shamai (Shitz) S (2009) An MMSE approach to the secrecy capacity of the MIMO Gaussian wiretap channel. EURASIP J Wirel Commun Netw 2009Google Scholar
  19. 19.
    Maurer U (1993) Secret key agreement by public discussion from common information. IEEE Trans Inf Theory 39:733–742CrossRefMATHGoogle Scholar
  20. 20.
    Maurer U, Wolf S (2003) Secret-key agreement over unauthenticated public channels. IEEE Trans Inf Theory 49:822–838MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Hassan AA, Stark WE, Hershey JE, Chennakeshu S (1996) Cryptographic key agreement for mobile radio. In: Signal digital processing, vol 6. Academic, San Diego, pp 207–212Google Scholar
  22. 22.
    Azimi-Sadjadi B, Mercado A, Kiayias A, Yener B (2007) Robust key generation from signal envelopes in wireless networks. In: Proceedings of ACM computer and communications security, pp 401–410Google Scholar
  23. 23.
    Jana S, Premnath SN, Clark M, Kasera S, Patwari N, Krishnamurthy SV (2009) On the effectiveness of secret key extraction from wireless signal strength in real environments. In: Proceedings of ACM international conference on mobile computing and networkingGoogle Scholar
  24. 24.
    Wilson R, Tse D, Scholtz RA (2007) Channel identification: secret sharing using reciprocity in ultrawideband channels. IEEE Trans Inf Forensics Secur 2:364–375CrossRefGoogle Scholar
  25. 25.
    Wang Q, Su H, Ren K, Kim K (2011) Fast and scalable secret key generation exploiting channel phase randomness in wireless networks. In:Proceedings of IEEE International Conference on Computer Communications (INFOCOM), 2011Google Scholar
  26. 26.
    Dillard RA (1979) Detectability of spread-spectrum signals. IEEE Trans Aerosp Electron Syst AES-15(4):526–537Google Scholar
  27. 27.
    Gutman LL, Prescott GE (1989) System quality factors for LPI communication. IEEE Aerosp Electron Syst Mag 4(12):25–28CrossRefGoogle Scholar
  28. 28.
    Flikkema P (1997) Spread-spectrum techniques for wireless communication. IEEE Signal Process Mag 14(3):26–36CrossRefGoogle Scholar
  29. 29.
    Pickholtz RL, Schilling DL, Milstein LB (1982) Theory of spread-spectrum communications—a tutorial. IEEE Trans Commun 30(5):855–884Google Scholar
  30. 30.
    Kohno R, Meidan R, Milstein LB (1995) Spread spectrum access methods for wireless communications. IEEE Commun Mag 33(1):58–67CrossRefGoogle Scholar
  31. 31.
    Spellman M (1983) A comparison between frequency hopping and direct spread PN as antijam techniques. IEEE Commun Mag 21(2):37–42Google Scholar
  32. 32.
    Burgos-Garcia M, Sanmartin-Jara J, Perez-Martinez F, Retamosa JA (2000) Radar sensor using low probability of interception SS-FH signals. IEEE Aerosp Electron Syst Mag 15(4):23–28CrossRefGoogle Scholar
  33. 33.
    Liang Y, Kramer G, Poor HV, Shamai (Shitz) S ( 2009) Compound wiretap channels. EURASIP J Wirel Commun Netw 2009:5:1–5:12Google Scholar
  34. 34.
    Goel S, Negi R (2008) Guaranteeing secrecy using artificial noise. IEEE Trans Wirel Commun 7(6):2180–2189CrossRefGoogle Scholar
  35. 35.
    Dong L, Han Z, Petropulu A, Poor H (2010) Improving wireless physical layer security via cooperating relays. IEEE Trans Signal Process 58(3):1875–1888MathSciNetCrossRefGoogle Scholar
  36. 36.
    Huang J, Swindlehurst A (2012) Robust secure transmission in MISO channels based on worst-case optimization. IEEE Trans Signal Process 60(4):1696–1707MathSciNetCrossRefGoogle Scholar
  37. 37.
    He X, Yener A (2010) Cooperation with an untrusted relay: a secrecy perspective. IEEE Trans Inf Theory 56(8):3807–3827MathSciNetCrossRefGoogle Scholar
  38. 38.
    Jeong C, Kim I-M, Kim DI (2012) Joint secure beamforming design at the source and the relay for an amplify and forward MIMO untrusted relay system. IEEE Trans Signal Process 60(1):310–325MathSciNetCrossRefGoogle Scholar
  39. 39.
    Chang T-H, Chiang W-C, Hong Y-WP, Chi C-Y (2010) Training sequence design for discriminatory channel estimation in wireless MIMO systems. IEEE Trans Signal Process 58(12):6223–6237MathSciNetCrossRefGoogle Scholar
  40. 40.
    Huang C-W, Chang T-H, Zhou X, Hong Y-WP (2013) Two-way training for discriminatory channel estimation in wireless MIMO systems. IEEE Trans Signal Process 61(10):2724–2738MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Y.-W. Peter Hong
    • 1
  • Pang-Chang Lan
    • 2
  • C.-C. Jay Kuo
    • 3
  1. 1.Department of Electrical EngineeringNational Tsing Hua UniversityHsinchuTaiwan, R.O.C.
  2. 2.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations