Advertisement

Point Spread Function and Modulation Transfer Function

  • Psang Dain LinEmail author
Chapter
  • 1.8k Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 178)

Abstract

As stated in  Sect. 3.5, the distribution of the ray density of the spot diagram formed in the image plane is called Point Spread Function (PSF). PSF plays an important role in the image formation theory, since it describes the impulse response of an optical system to a source point.

Keywords

Source Point Optical System Image Plane Point Spread Function Coordinate Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    V.N. Mahajan, Optical Imaging and Aberrations Part I Ray Geometrical Optics (SPIE—The Interational Society for Optical Engineering, Bellingham, 1998)Google Scholar
  2. 2.
    K.H. Tseng, C. Kung, T.T. Liao, H.P. Chang, Calculation of modulation transfer function of an optical system by using skew ray tracing. Trans. Can. Soc. Mech. Eng. (J. Mech. Eng.) 33, 429–442 (2009)Google Scholar
  3. 3.
    S. Inoue, N. Tsumura, Y. Miyake, Measuring MTF of paper by sinusoidal test pattern projection. J. Imaging Sci. Technol. 41, 657–661 (1997)Google Scholar
  4. 4.
    G.D. Boreman, S. Yang, Modulation transfer function measurement using three- and four-bar targets. Appl. Opt. 34, 8050–8052 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    D.N. Sitter, J.S. Goddard, R.K. Ferrell, Method for the measurement of the modulation transfer function of sampled imaging systems from bar-target patterns. Appl. Opt. 34, 746–751 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    R. Barakat, Determination of the optical transfer function directly from the edge spread function. J. Opt. Soc. Am. 55, 1217–1221 (1965)ADSCrossRefGoogle Scholar
  7. 7.
    G.L. Rogers, Measurement of the modulation transfer function of paper. Appl. Opt. 37, 7235–7240 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    S.K. Park, R. Schowengerdt, M. Kaczynski, Modulation-transfer-function analysis for sampled image system. Appl. Opt. 23, 2572–2582 (1984)ADSCrossRefGoogle Scholar
  9. 9.
    S. Inoue, N. Tsumura, Y. Miyake, Measuring MTF of paper by sinusoidal test pattern projection. J. Imaging Sci. Technol. 41, 657–661 (1997)Google Scholar
  10. 10.
    K.H. Tseng, C. Kung, T.T. Liao, H.P. Chang, Calculation of modulation transfer function of an optical system by using skew ray tracing. Trans. Can. Soc. Mech. Eng. (J. Mech. Eng.) 33, 429–442 (2009)Google Scholar
  11. 11.
    E. Giakoumakis, M.C. Katsarioti, G.S. Panayiotakis, Modulation transfer function of thin transparent foils in radiographic cassettes Appl. Phys. Solids Surf. 52, 210–212 (1991)Google Scholar
  12. 12.
    W.J. Smith, Modern Optical Engineering, 3rd edn. (Edmund Industrial Optics, Barrington, 2001)Google Scholar
  13. 13.
    O.N. Stavroudis, The Optics of Rays, Wavefronts, and Caustics (Academic press, New York, 1972)Google Scholar
  14. 14.
    O.N. Stavroudis, The Mathematics of Geometrical and Physical Optics (Wiley-VCH Verlag, Weinheim, 2006)Google Scholar
  15. 15.
    J.A. Hoffnagle, D.L. Shealy, Refracting the k-function: Stavroudis’s solution to the eikonal equation for multielement optical systems. J. Opt. Soc. Am. A 28, 1312–1321 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    D.L. Shealy, D.G. Burkhard, Caustic surfaces and irradiance for reflection and refraction from an ellipsoid, elliptic parabolid and elliptic cone. Appl. Opt. 12, 2955–2959 (1973)ADSCrossRefGoogle Scholar
  17. 17.
    D.L. Shealy, D.G. Burkhard, Caustic surface merit functions in optical design. J. Opt. Soc. Am. 66, 1122 (1976)Google Scholar
  18. 18.
    D.L. Shealy, Analytical illuminance and caustic surface calculations in geometrical optics. Appl. Opt. 15, 2588–2596 (1976)ADSCrossRefGoogle Scholar
  19. 19.
    T.B. Andersen, Optical aberration functions: computation of caustic surfaces and illuminance in symmetrical systems. Appl. Opt. 20, 3723–3728 (1981)ADSCrossRefGoogle Scholar
  20. 20.
    A.M. Kassim, D.L. Shealy, Wave front equation, caustics, and wave aberration function of simple lenses and mirrors. Appl. Opt. 21, 516–522 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    A.M. Kassim, D.L. Shealy, D.G. Burkhard, Caustic merit function for optical design. Appl. Opt. 28, 601–606 (1989)ADSCrossRefGoogle Scholar
  22. 22.
    G. Silva-Orthigoza, M. Marciano-Melchor, O. Carvente-Munoz, R. Silva-Ortigoza, Exact computation of the caustic associated with the evolution of an aberrated wavefront. J. Opt. A Pure Appl. Opt. 4, 358–365 (2002)Google Scholar
  23. 23.
    D.L. Shealy, J.A. Hoffnagle, Wavefront and caustics of a plane wave refracted by an arbitrary surface. J. Opt. Soc Am. A 25, 2370–2382 (2008)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2014

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Cheng Kung UniversityTainanTaiwan R.O.C

Personalised recommendations