Skip to main content

High Thermal Conductivity of BN-Filled Polybenzoxazines

  • Chapter
  • First Online:
Alloys and Composites of Polybenzoxazines

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

This chapter discusses one engineering application of polybenzoxazines as a highly thermally conductive electronic packaging encapsulant. The combination of various useful properties of benzoxazine resins and their resulting polymers has been demonstrated to render a very high thermally conductive polymer composite. Thermal conductivity value as high as 32.5 W/mK in hexagonal boron nitride-filled polybenzoxazine, up to present, remains the highest reported thermal conductivity value in the literature. Other outstanding properties of the resulting composites as an electronic packaging encapsulant are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroschwitz JI, editor-in-chief (1985) Encyclopedia of polymer science and engineering. Wiley Interscience, New York

    Google Scholar 

  2. Godovsky YK (1992) Thermophysical properties of polymers. Verlag, New York

    Book  Google Scholar 

  3. Werdecker W, Aldinger F, Heraeus WC (1984) IEEE 1984 electronic components conference. New Orleans, 14–16 May 1984, pp 402

    Google Scholar 

  4. Lau JH, Wong CP, Price JL, Nakayama W (1998) Electronic packaging: design, materials process, and reliability. McGraw-Hill, New York

    Google Scholar 

  5. Ishida H, Rimdusit S (1998) Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. Thermochim Acta 320:177–186

    Article  CAS  Google Scholar 

  6. Rimdusit S (2000) Development of high reliability and high processability thermosets for electronic packaging applications based on ternary systems of benzoxazine, epoxy, and phenolic resins. Doctoral Dissertation, Case Western Reserve University, Ohio

    Google Scholar 

  7. Ishida H, Agag T (2011) Handbook of benzoxazine resins. Elsevier, New York

    Google Scholar 

  8. Kumar KSS, Nair CPR (2010) Polybenzoxazine: chemistry and properties. iSmith Rapra Publishing, UK

    Google Scholar 

  9. Ishida H (1999) US Patent 5,900,447

    Google Scholar 

  10. Ishida H, Rimdusit S (2001) US Patent 6,207,786

    Google Scholar 

  11. Song-Hua S, Lejun W, Tian-An C (2007) US Patent 7,179,684

    Google Scholar 

  12. Hyoung-Juhn K, Yeong-Chan E, Sung-Yong C, Ho-Jin K, Jin-Kyoung M, Dong-Hun L, Ju-Yong K, Seong-Jin A (2009) US Patent 7,510,678

    Google Scholar 

  13. Seong-Woo C, Jung-Ock P (2012) US Patent 8,323,849

    Google Scholar 

  14. Kuihara S, Idei H, Aoyagi Y, Kuroe M (2012) US Patent 8,227,390

    Google Scholar 

  15. Tanaka T, Kuzako M, Okamoto K (2012) Toward high thermal conductivity nano micro epoxy composites with sufficient endurance voltage. J Intern Counc Elect Eng 2:90–98

    Article  Google Scholar 

  16. Berman R (1973) Heat conductivity of non-metallic crystals. Contemporary Physics, vol 14, pp 101

    Google Scholar 

  17. Ruth R, Donaldson KY, Hasselman DPH (1992) Thermal conductivity of boron carbide–boron nitride composites. J Am Ceram Soc 75:2887

    Article  Google Scholar 

  18. Pettersson S, Mahan GD (1990) Theory of the thermal boundary resistance between dissimilar lattices. Phys Rev B 42:7386

    Article  Google Scholar 

  19. German RM (1989) Particle packing characteristics. Metal powders industries federation. Princeton, New Jersey

    Google Scholar 

  20. Ishida H, Allen DJ (1996) Gelation behavior of near-zero shrinkage polybenzoxazines. J Polym Sci Phys Ed 34:1019

    Article  CAS  Google Scholar 

  21. Bujard P (1988) Thermal conductivity of boron nitride filled epoxy resins: temperature dependence and influence of sample preparation. In: thermal phenomena in the fabrication and operation of electronic components. Proceedings of I-THERM, May 1988, IEEE, Los Angles, p 41

    Google Scholar 

  22. Ruschau GR, Newnham RE (1992) Critical volume fractions in conductive composites. J Compos Mater 26:2727

    Article  CAS  Google Scholar 

  23. Ruschau GR, Yoshikawa S, Newnham RE (1992) Percolation constraints in the use of conductor-filled polymers for interconnects. In: 42nd electronic components and technology conference, proceedings IEEE, May 1992, IEEE, Piscataway, p 481

    Google Scholar 

  24. Schroder J (1963) Apparatus for determining the thermal conductivity of solids in the temperature range from 20 to 200 °C. Rev Sci Instrum 34:615

    Article  Google Scholar 

  25. Padilla A, Sanchez-Solis A, Manero O (1988) A note on the thermal conductivity of filled polymers. J Compos Mater 22:616

    Article  CAS  Google Scholar 

  26. Bujard P, Kuhnlein G, Ino S, Shiobara T (1994) Thermal conductivity of molding compounds for plastic packaging. IEEE Trans Compn Packg Manu Tech Part A 17:527

    Google Scholar 

  27. Agari Y, Uno T (1985) Thermal conductivity of polymer filled with carbon materials: effect of conductive particle chains on thermal conductivity. J Appl Polym Sci 30:2225

    Article  CAS  Google Scholar 

  28. Agari Y, Ueda A, Nagai S (1994) Electrical and thermal conductivities of polyethylene composites filled with biaxial oriented short-cut carbon fibers. J Appl Polym Sci 52:1223

    Article  CAS  Google Scholar 

  29. Sahimi M (1994) Applications of percolation theory. Taylor and Francis, London

    Google Scholar 

  30. Neogi P (ed) (1996) Diffusion in polymers. Marcel Dekker, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarawut Rimdusit .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Rimdusit, S., Jubsilp, C., Tiptipakorn, S. (2013). High Thermal Conductivity of BN-Filled Polybenzoxazines. In: Alloys and Composites of Polybenzoxazines. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-4451-76-5_4

Download citation

Publish with us

Policies and ethics