Introduction

Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

Image segmentation, which extracts meaningful partitions from an image, is a critical technique in image processing and computer vision

Keywords

Interactive image segmentation Automatic image segmentation  Object extraction Boundary tracking 

References

  1. 1.
    Bai X, Sapiro G (2007) A geodesic framework for fast interactive image and video segmentation and matting. In: IEEE 11th international conference on computer vision, ICCV 2007, IEEE, pp. 1–8Google Scholar
  2. 2.
    Grady L, Sun Y, Williams J (2006) Three interactive graph-based segmentation methods applied to cardiovascular imaging. In: Paragios N, Chen Y, Faugeras O (eds) Handbook of Mathematical Models in Computer Vision. Springer, pp. 453–469Google Scholar
  3. 3.
    Ruwwe C, Zölzer U (2006) Graycut-object segmentation in ir-images. In: Bebis G, Boyle R, Parvin B, Koracin D, Remagnino P, Nefian AV, Gopi M, Pascucci V, Zara J, Molineros J, Theisel H, Malzbender T (eds) Proceedings of Second International Symposium on Advances in Visual Computing, ISVC 2006, Nov 6–8, vol 4291. Springer, pp 702–711, ISBN: 3-540-48628-3, http://researchr.org/publication/RuwweZ06, doi: 10.1007/11919476_70
  4. 4.
    Steger S, Sakas G (2012) Fist: fast interactive segmentation of tumors. Abdominal Imaging. Comput Clin Appl 7029:125–132Google Scholar
  5. 5.
    Sommer C, Straehle C, Koethe U, Hamprecht FA (2011) ilastik: interactive learning and segmentation toolkit. In: 8th IEEE international symposium on biomedical imaging (ISBI 2011)Google Scholar
  6. 6.
    Ikonomakis N, Plataniotis K, Venetsanopoulos A (2000) Color image segmentation for multimedia applications. J Intel Robot Syst 28(1):5–20CrossRefGoogle Scholar
  7. 7.
    Luccheseyz L, Mitray S (2001) Color image segmentation: A state-of-the-art survey. Proc Indian Natl Sci Acad (INSA-A) 67(2):207–221Google Scholar
  8. 8.
    Pratt W (2007) Digital image processing: PIKS scientific inside. Wiley-Interscience publication. Wiley, New YorkGoogle Scholar
  9. 9.
    McGuinness K, O’Connor N (2010) A comparative evaluation of interactive segmentation algorithms. Pattern Recogn 43(2):434–444MATHCrossRefGoogle Scholar
  10. 10.
    Boykov Y, Jolly M (2001) Interactive graph cuts for optimal boundary and region segmentation of objects in nd images. In: Eighth IEEE international conference on computer vision, 2001. ICCV 2001, IEEE, vol 1, pp. 105–112Google Scholar
  11. 11.
    Boykov Y, Veksler O (2006) Graph cuts in vision and graphics: theories and applications. In: Handbook of Mathematical Models in Computer Vision pp 79–96Google Scholar
  12. 12.
    Mortensen E, Barrett W (1998) Interactive segmentation with intelligent scissors. Graph Models Image Proces 60(5):349–384MATHCrossRefGoogle Scholar
  13. 13.
    Mortensen E, Morse B, Barrett W, Udupa J (1992) Adaptive boundary detection using ‘live-wire’ two-dimensional dynamic programming. In: Computers in Cardiology 1992. Proceedings, IEEE, pp. 635–638Google Scholar
  14. 14.
    Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intel 28(11):1768–1783CrossRefGoogle Scholar
  15. 15.
    Kim T, Lee K, Lee S (2008) Generative image segmentation using random walks with restart. Comput Vision-ECCV 2008:264–275Google Scholar
  16. 16.
    Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intel 16(6):641–647CrossRefGoogle Scholar
  17. 17.
    Mehnert A, Jackway P (1997) An improved seeded region growing algorithm. Pattern Recogn Lett 18(10):1065–1071CrossRefGoogle Scholar
  18. 18.
    Ning J, Zhang L, Zhang D, Wu C (2010) Interactive image segmentation by maximal similarity based region merging. Pattern Recogn 43(2):445–456MATHCrossRefGoogle Scholar
  19. 19.
    Malmberg F (2011) Graph-based methods for interactive image segmentation. Ph.D. thesis, University WestGoogle Scholar
  20. 20.
    Shi R, Liu Z, Xue Y, Zhang X (2011) Interactive object segmentation using iterative adjustable graph cut. In: Visual communications and image processing (VCIP), IEEE, 2011, pp 1–4Google Scholar
  21. 21.
    Calderero F, Marques F (2010) Region merging techniques using information theory statistical measures. IEEE Trans Image Proces 19(6):1567–1586MathSciNetCrossRefGoogle Scholar
  22. 22.
    Couprie C, Grady L, Najman L, Talbot H (2009) Power watersheds: a new image segmentation framework extending graph cuts, random walker and optimal spanning forest. In: 2009 IEEE 12th international conference on computer vision, pp 731–738. IEEEGoogle Scholar
  23. 23.
    Falcão A, Udupa J, Miyazawa F (2000) An ultra-fast user-steered image segmentation paradigm: live wire on the fly. IEEE Trans Med Imag 19(1):55–62CrossRefGoogle Scholar
  24. 24.
    Noma A, Graciano A, Consularo L, Bloch I (2012) Interactive image segmentation by matching attributed relational graphs. Pattern Recogn 45(3):1159–1179CrossRefGoogle Scholar
  25. 25.
    Collins LM (2006) Byu scientists create tool for “virtual surgery”. Deseret Morning News pp 07–31Google Scholar
  26. 26.
    Mortensen EN, Barrett WA (1995) Intelligent scissors for image composition. In: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, SIGGRAPH ’95, pp. 191–198. ACM, New York (1995)Google Scholar
  27. 27.
    Friedland G, Jantz K, Rojas R (2005) Siox: simple interactive object extraction in still images. In: Seventh IEEE international symposium on multimedia, p 7. IEEEGoogle Scholar
  28. 28.
    Friedland G, Lenz T, Jantz K, Rojas R (2006) Extending the siox algorithm: alternative clustering methods, sub-pixel accurate object extraction from still images, and generic video segmentation. Free University of Berlin, Department of Computer Science, Technical report B-06-06Google Scholar
  29. 29.
    Gimp G (2008) Image manipulation program. User manual, Edge-detect filters, Sobel, The GIMP Documentation TeamGoogle Scholar
  30. 30.
    Lombaert H, Sun Y, Grady L, Xu C (2005) A multilevel banded graph cuts method for fast image segmentation. In: Tenth IEEE international conference on computer vision, 2005. ICCV, vol 1, pp 259–265. IEEEGoogle Scholar
  31. 31.
    McGuinness K, OConnor NE (2011) Toward automated evaluation of interactive segmentation. Comput Vis Image Underst 115(6):868–884CrossRefGoogle Scholar
  32. 32.
    Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intel 26(9):1124–1137CrossRefGoogle Scholar
  33. 33.
    Gauch J, Hsia C (1992) Comparison of three-color image segmentation algorithms in four color spaces. In: Applications in optical science and engineering, pp 1168–1181. International Society for Optics and PhotonicsGoogle Scholar
  34. 34.
    Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceeding of 8th international conference computer vision, vol 2, pp. 416–423Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.School of Electrical EngineeringKorea UniversitySeoulRepublic of South Korea
  3. 3.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations