Advances in Hydroinformatics

Part of the series Springer Hydrogeology pp 433-444


A Vortex Modeling with 3D CFD

  • Grégory GuyotAffiliated withEDF-CIH Email author 
  • , Hela MaaloulAffiliated withEDF-CIH
  • , Antoine ArcherAffiliated withEDF-R&D

* Final gross prices may vary according to local VAT.

Get Access


Until now, the fine representations of the complex hydraulic phenomena such as Vortex rely on physical modeling for industrial purposes. EDF has been testing the 3D CFD code “Flow 3D©” for free surface flow simulation since five years. The main difficulty of using finite elements programs is the relevance and the stability of their numerical results. EDF decided to test in the field of vortex how reliable Flow 3D is. Flow 3D is a commercial CFD code using VOF method with a rectangular mesh. In this study, it is assumed that flow is liquid water with an interface simulated by VOF method. This study is based on a schematic hydraulic experimental model realized in the EDF-R&D laboratory. The chosen case is a simple configuration of a vertical downward drain hole. The basin is one meter length and around a half meter width. The water level is fixed, and the flow rate is adjustable. The main advantage of this experiment is that the geometry is easy to simulate with 3D CFD software. In this configuration, it is ensured that a vortex phenomenon exists and that it is stable during experimentations. An aerated vortex with no air flow rate has been chosen for the validation case. The aerated vortex length reaches the basin bottom. The first goal of the 3D CFD simulation is to check whether Flow 3D© is able to represent a vortex when it physically exists. The second objective is to find the simplest set of CFD parameters that represents the vortex as it appears in the physical experimentation.


Vortex Water intake Complex hydraulic phenomenon Numerical simulation CFD VOF method