Skip to main content

Integrated Water Quality Modelling of the River Zenne (Belgium) Using OpenMI

  • Chapter
  • First Online:
Advances in Hydroinformatics

Part of the book series: Springer Hydrogeology ((SPRINGERHYDRO))

Abstract

The modelling of the different catchment processes is key for integrated water resources management. Constructing a single model for all the catchment processes may not always be a feasible option, and it does not make appropriate use of existing models. The Open Modelling Interface (OpenMI), which allows time-dependent models to exchange data at run-time, might just be useful for such proposes. We used the Soil and Water Assessment Tool (SWAT) and the Storm Water Management Model (SWMM) for simulating rural and urban catchment processes, respectively. We also used SWMM to model the river processes. To link these models in OpenMI, both models were migrated to the OpenMI platform. As the water quality processes in SWAT are based on the QUAL2E process description, a new OpenMI compliant water quality module that is based on the same principles was developed to simulate the water quality processes in the river. The latter model, which uses a river network that is similar to that of the SWMM river model, is then also linked to the SWMM model using OpenMI. We tested this integrated model for the river Zenne in Belgium. The integrated model results show that such integration can be very useful as a decision support tools for integrated river basin management approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EU (2000). Directive 2000/60/EC of the European parliament and of the council of 23 Oct 2000 establishing a framework for community action in the field of water policy. EU-WFD.

    Google Scholar 

  2. Betrie, G. D., van Griensven, A., Mohamed, Y. A., Popescu, I., Mynett, A. E., & Hummel, S. (2011). Linking SWAT and SOBEK using open modeling interface (OpenMI) for sediment transport simulation in the Blue Nile river basin. Trans. Am. Soc. Agric. Biol Eng, 54, 1749–1757.

    Google Scholar 

  3. Debele, B., Srinivasan, R., & Parlange, J. Y. (2008). Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins. Env. Model. Assess., 13, 135–153.

    Article  Google Scholar 

  4. Arnold, J. G., Srinivasan, R., Mukundan, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: model development. J. Am. Water Res. Ass., 34, 73–78.

    Article  Google Scholar 

  5. Refsgaard, J. C. (1997). Parameterisation, calibration and validation of distributed hydrological models. J. Hydrol., 198, 69–97.

    Article  Google Scholar 

  6. Jha, M. K., Gassman, P. W., & Arnold, J. G. (2007). Water quality modeling for the Raccoon river watershed using SWAT. Trans. Am. Soc. Agric. Biol. Eng., 50, 479–493.

    Google Scholar 

  7. Lam, Q. D., Schmalz, B., & Fohrer, N. (2010). Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model. Agr. Water Manag., 97, 317–325.

    Article  Google Scholar 

  8. Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., & Hauck, L. M. (2001). Validation of the SWAT model on a large river basin with point and nonpoint sources. J. Am. Water Res. Ass., 37, 1169–1188.

    Article  Google Scholar 

  9. Srinivasan, R., Ramanarayanan, T. S., Arnold, J. G., & Bednarz, S. T. (1998). Large area hydrologic modeling and assessment part II: Model application. J. Am. Water Res. Ass., 34, 91–101.

    Article  Google Scholar 

  10. White, K. L., & Chaubey, I. (2005). Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model. J. Am. Water Res. Ass., 41, 1077–1089.

    Article  Google Scholar 

  11. Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The soil and water assessment tool: Historical development, applications, and future research directions. Trans. Am. Soc. Agric. Biol. Eng., 50, 1211–1250.

    Google Scholar 

  12. Williams, J. R. (1969). Flood routing with variable travel time or variable storage coefficients. Trans. Am. Soc. Agric. Biol. Eng., 12, 0100–0103.

    Google Scholar 

  13. Chow, V. T. (1959). Open channel hydraulics. New York: McGraw-Hill Book Company.

    Google Scholar 

  14. Rossman, L. A. (2010). Storm water management model user’s manual. Cincinnati: National risk management research laboratory. 45268.

    Google Scholar 

  15. Brunner, G. W. (2008). HEC-RAS River analysis system user manual, version 4.0. Davis: Institute for Water Resources.

    Google Scholar 

  16. Havno, K., Madsen, M. N., & Dorge, J. (Eds.). (1995). MIKE-11: A generalized river modeling package, Highlands Ranch. Colo: Water Resources Publications.

    Google Scholar 

  17. Brandmeyer, J. E., & Karimi, H. A. (2000). Coupling methodologies for environmental models. Environ. Model. Softw., 15, 479–488.

    Article  Google Scholar 

  18. Gregersen, J. B., Gijsbers, J. A., & Westen, S. J. P. (2007). OpenMI: Open modelling interface. J. Hydroinformatics, 9, 175–191.

    Article  Google Scholar 

  19. Reubner, F., Alex, J., Bach, M., Schutze, M., & Muschalla, D. (2009). Basin-wide integrated modelling via OpenMI considering multiple urban catchments. Water Sci. Technol., 60, 1241–1248.

    Article  Google Scholar 

  20. Brown, L. C., & Barnwell, T. O. (1987). The enhanced stream water quality models QUAL2E and QUAL-UNCAS: Documentation and user manual. EPA.

    Google Scholar 

  21. Masliev, I., Somlyody, L. & Koncsos, L. (1995). On reconciliation of traditional water quality models and activated sludge models. Working paper WP-95-18, IIASA, Laxenburg, Austria.

    Google Scholar 

  22. Mohseni, O., Stefan, H. G., & Erickson, T. R. (1998). A nonlinear regression model for weekly stream temperatures. Water Resour. Res., 34, 2685–2692.

    Article  Google Scholar 

  23. Winchell, M., Srinivasan, R., & Luzio, M. D. (2010). ArcSWAT interface for SWAT2009 user’s guide. Blackland: Soil and Water Research Laboratory Agricultural Research Service.

    Google Scholar 

  24. van Liew, M. W., Arnold, J. G., & Bosch, D. D. (2005). Problems and potential of autocalibrating a hydrologic model. Trans. Am. Soc. Agric. Biol. Eng., 48, 1025–1040.

    Google Scholar 

  25. Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., & Neitsch, S. L. (2011). Soil and water assessment tool. Input/output file documentation, Version 2009. Temple: Agrilife Blackland Research Center. 76502.

    Google Scholar 

  26. Neitsch, S. L, Arnold, J. G, Kiniry, J. R, Williams, J. R. (2011). Soil and water assessment tool. Theoretical documentation, Version 2009. Grassland, Soil and Water Research Laboratory, Agricultural Research Service Blackland Research Center-Texas AgriLife Research.

    Google Scholar 

  27. USDA-SCS. (1986). US Department of Agriculture-Soil Conservation Service (USDA-SCS): Urban hydrology for small watersheds. Washington, DC: USDA.

    Google Scholar 

  28. Mein, R. G., & Larson, C. L. (1973). Modeling infiltration during a steady rain. Water Resour. Res., 9, 384–394.

    Article  Google Scholar 

  29. Arnold, J. G., Williams, J. R., & Maidment, D. R. (1995). Continuous-time water and sediment-routing model for large basins. J. Hydraul. Eng., 121, 171–183.

    Article  Google Scholar 

  30. Monteith, J. L. (1995). Evaporation and environment. Symp. Soc. Exp. Biol., 19, 205–234.

    Google Scholar 

  31. Hargreaves, G. L., Hargreaves, G. H., & Riley, J. P. (1985). Agricultural benefits for Senegal River basin. J. Irrig. Drainage Eng., 111, 113–124.

    Article  Google Scholar 

  32. Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev., 100, 81–92.

    Article  Google Scholar 

  33. Reichert, P., Borchardt, D., Henze, M., Rauch, W., Shanahan, P., Somlyody, L., et al. (2001). River water quality model no. 1. London: IWA Publishing.

    Google Scholar 

  34. van Griensven, A., Meixner, T., Grunwald, S., Bishop, T., Di Lluzio, M., & Srinivasan, R. (2006). A global sensitivity analysis tool for the parameters of multi-variable catchment models. J. Hydrol., 324, 10–23.

    Article  Google Scholar 

  35. Green, C. H., & Van Griensven, A. (2008). Autocalibration in hydrologic modeling: Using SWAT2005 in small-scale watersheds. Environ. Model. Softw., 23, 422–434.

    Article  Google Scholar 

  36. Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I: A discussion of principles. J. Hydrol., 10, 282–290.

    Article  Google Scholar 

  37. Kannan, N., White, S. M., Worrall, F., & Whelan, M. J. (2007). Hydrological modelling of a small catchment using SWAT-2000: Ensuring correct flow partitioning for contaminant modelling. J. Hydrol., 334, 64–72.

    Article  Google Scholar 

Download references

Acknowledgments

The study was carried out in the framework of the project “Towards a good ecological status of the River Zenne (GESZ)”, as funded by INNOVIRIS, the Brussels Institute for Research and Innovation. We also thank all the institutes and administrations mentioned in this paper for providing the necessary data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olkeba Tolessa Leta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Leta, O.T., Shrestha, N.K., de Fraine, B., van Griensven, A., Bauwens, W. (2014). Integrated Water Quality Modelling of the River Zenne (Belgium) Using OpenMI. In: Gourbesville, P., Cunge, J., Caignaert, G. (eds) Advances in Hydroinformatics. Springer Hydrogeology. Springer, Singapore. https://doi.org/10.1007/978-981-4451-42-0_22

Download citation

Publish with us

Policies and ethics