A Non-Hydrostatic Non-Dispersive Shallow Water Model

  • Didier Clamond
  • Denys Dutykh
Part of the Springer Hydrogeology book series (SPRINGERHYDRO)


An improvement of the nonlinear shallow water (or Saint-Venant) equations is proposed. The new model is designed to take into account the effects resulting from the large spatial and/or temporal variations of the seabed. The model is derived from a variational principle by choosing the appropriate shallow water ansatz and imposing suitable constraints. Thus, the derivation procedure does not explicitly involve any small parameter.


Varying bathymetry Steep bottom Modified Saint-Venant equations. 


  1. 1.
    de Saint-Venant, A. J. C. (1871). Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lit. C. R. Academic Science Paris, 73, 147–154.Google Scholar
  2. 2.
    Peregrine, D. H. (1967). Long waves on a beach. Journal of Fluid Mechanics, 27, 815–827.CrossRefzbMATHGoogle Scholar
  3. 3.
    Serre, F. (1953). Contribution à l’étude des écoulements permanents et variables dans les canaux. La Houille blanche, 8, 374–872.CrossRefGoogle Scholar
  4. 4.
    Dressler, R. F. (1978). New nonlinear shallow-flow equations with curvature. Journal of Hydraulic Research, 16(3), 205–222.CrossRefGoogle Scholar
  5. 5.
    Keller, J. B. (2003). Shallow-water theory for arbitrary slopes of the bottom. Journal of Fluid Mechanics, 489, 345–348.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bouchut, F., Mangeney-Castelnau, A., Perthame, B., & Vilotte, J.-P. (2003). A new model of Saint-Venant and Savage-Hutter type for gravity driven shallow water flows. C. R. Academic Science Paris, I(336), 531–536.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Clamond, D., & Dutykh, D. (2012). Practical use of variational principles for modeling water waves. Physica D: Nonlinear Phenomena, 241(1), 25–36.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Petrov, A. A. (1964). Variational statement of the problem of liquid motion in a container of finite dimensions. Prikladnaia Mathematics Mekhanika, 28(4), 917–922.zbMATHGoogle Scholar
  9. 9.
    Luke, J. C. (1967). A variational principle for a fluid with a free surface. Journal of Fluid Mechanics, 27, 375–397.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zakharov, V. E. (1968). Stability of periodic waves of finite amplitude on the surface of a deep fluid. Journal of Applied Mechanical Technology Physics, 9, 190–194.CrossRefGoogle Scholar
  11. 11.
    Miles, J. W., & Salmon, R. (1985). Weakly dispersive nonlinear gravity waves. Journal of Fluid Mechanics, 157, 519–531.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dutykh, D., & Clamond, D. (2011). Shallow water equations for large bathymetry variations. Journal of Physics A: Mathematical Theory, 44, 332001.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kolgan, N. E. (1975). Finite-difference schemes for computation of three dimensional solutions of gas dynamics and calculation of a flow over a body under an angle of attack. Uchenye Zapiski TsaGI [Science Notes Central Institute Aerodyn], 6(2), 1–6.Google Scholar
  14. 14.
    van Leer, B. (1979). Towards the ultimate conservative difference scheme V: a second order sequel to Godunov’ method. Journal of Computer Physics, 32, 101–136.CrossRefGoogle Scholar
  15. 15.
    van Leer, B. (2006). Upwind and high-resolution methods for compressible flow: From donor cell to residual-distribution schemes. Communications in Computational Physics, 1, 192–206.zbMATHGoogle Scholar
  16. 16.
    Harten, A., & Osher, S. (1987). Uniformly high-order accurate nonoscillatory schemes. I. SIAM Journal of Numerical Analytical, 24, 279–309.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Harten, A. (1989). ENO schemes with subcell resolution. Journal of Computer Physics, 83, 148–184.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Xing, Y., & Shu, C.-W. (2005). High order finite difference WENO schemes with the exact conservation property for the shallow water equations. Journal of Computer Physics, 208, 206–227.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Dutykh, D., & Clamond, D. (2012). Modified shallow water equations for significantly varying bottoms. Submitted.Google Scholar
  20. 20.
    Dutykh, D., Katsaounis, T., & Mitsotakis, D. (2011). Dispersive wave runup on non-uniform shores. In J. Fort, et al. (Eds.), Finite Volumes for Complex Applications VI - Problems & Perspectives (pp. 389–397). pp Prague: Springer Berlin Heidelberg.Google Scholar
  21. 21.
    Dutykh, D., Labart, C., & Mitsotakis, D. (2011). Long wave run-up on random beaches. Physics Review Letter, 107, 184504.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2014

Authors and Affiliations

  1. 1.Laboratoire J.-A. Dieudonné Parc ValroseUniversité de Nice – Sophia AntipolisNiceFrance
  2. 2.Université de Savoie, Laboratoire de Mathématiques Appliquées Campus ScientifiqueLeBourget-du-Lac CedexFrance

Personalised recommendations