Skip to main content

A Review on Utilization of Construction and Demolition Waste (CDW) Toward Green and Circular Economy

  • Conference paper
  • First Online:
Advances in Geotechnics and Structural Engineering

Abstract

Globally, policy makers have realized the significance of infrastructure development with respect to safety and environment-friendly approach. This has resulted in reuse and recycling initiatives in various industries including construction and building sector. Further, it is imperative to understand new techniques and methods to improve the effectiveness of recycling, keeping environment and carbon emissions in check. Recently, utilization of construction and demolition waste (CDW) as precursors in synthesizing alkali-activated and geopolymer binders have caught attention of researchers as green building material. This review paper discusses the findings of the latest research and promotes the use of CDW as a potential starting or precursor material in alkali-activated or geopolymer concrete toward green and circular economy. If processed appropriately, CDW can be used to produce environment-friendly binders that can reduce our dependence on conventional binders like Portland cement, thus promoting recycling in sustainable and eco-friendly manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruiz LAL, Ramon XR, Domingo SG (2020) The circular economy in the construction and demolition waste sector–a review and an integrative model approach. J Clean Prod 248:119238. https://doi.org/10.1016/j.jclepro.2019.119238

    Article  Google Scholar 

  2. Baidya R, Ghosh SK (2019) Low carbon cement manufacturing in India by co-processing of alternative fuel and raw materials. Energ Source Part A 41:2561–2572. https://doi.org/10.1080/15567036.2018.1555630

    Article  Google Scholar 

  3. Hossiney N, Sepuri HK, Mohan MK, Arjun HR, Govindaraju S, Chyne J (2020) Alkali-activated concrete paver blocks made with recycled asphalt pavement (RAP) aggregates. Case Stud in Constr Mater 12:e0032. https://doi.org/10.1016/j.cscm.2019.e00322

    Article  Google Scholar 

  4. Hossiney N, Sepuri HK, Mohan MK, Chandra SK, Kumar SL, Thejas HK (2020) Geopolymer concrete paving blocks made with Recycled Asphalt Pavement (RAP) aggregates towards sustainable urban mobility development. Cogent Eng 7:1824572. https://doi.org/10.1080/23311916.2020.1824572

    Article  Google Scholar 

  5. Thejas HK, Hossiney N (2020) Use of waste foundry sand in precast concrete paver blocks—a study with Belgaum foundry industry. In: Kanwar V, Shukla S (eds) Sustainable civil engineering practices. LNCE, vol 72. Springer, Singapore, pp 1–7. https://doi.org/10.1007/978-981-15-3677-9_1

  6. Velumani P, Senthilkumar S (2018) Production of sludge-incorporated paver blocks for efficient waste management. J Air Waste Manag Assoc 68:626–636. https://doi.org/10.1080/10962247.2017.1395373

    Article  Google Scholar 

  7. Hossiney N, Das P, Mohan MK, George J (2018) In-plant production of bricks containing waste foundry sand—a study with Belgaum foundry industry. Case Stud Constr Mater 9:e00170. https://doi.org/10.1016/j.cscm.2018.e00170

    Article  Google Scholar 

  8. Jose J, Hossiney N (2016) Characteristics of concrete containing waste foundry sand and slag sand. Int J Earth Sci Eng 9:54–59

    Google Scholar 

  9. Poon CS, Kou SC, Wan HW, Etxeberria M (2009) Properties of concrete blocks prepared with low grade recycled aggregates. Waste Manage 29:2369–2377. https://doi.org/10.1016/j.wasman.2009.02.018

    Article  Google Scholar 

  10. Poon CS, Chan D (2006) Paving blocks made with recycled concrete aggregate and crushed clay brick. Constr Build Mater 20:569–577. https://doi.org/10.1016/j.conbuildmat.2005.01.044

    Article  Google Scholar 

  11. Buchwald A, Kaps C, Hohmann M (2003) Alkali-activated binders and pozzolan cement binders–complete binder reaction or two sides of the same story. In: Proceedings of the 11th international congress on the chemistry of cement (ICCC), Durban, South Africa

    Google Scholar 

  12. Nazari A, Sanjayan JG (2016) Handbook of low carbon concrete. Butterworth- Heinemann

    Google Scholar 

  13. McLellan BC, Williams RP, Lay J, Riessen AV, Corder GD (2011) Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J Clean Prod 19:1080–1090. https://doi.org/10.1016/j.jclepro.2011.02.010

    Article  Google Scholar 

  14. Waldmann D, Thapa VB (2018) A short review on alkali-activated binders and geopolymer binders. Vielfalt im Massivbau-Festschrift zum 65 Geburtstag von Prof. Dr. Ing. Jürgen Schnell. http://hdl.handle.net/10993/35284

  15. Arulrajah A, Piratheepan J, Disfani MM, Bo MW (2013) Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications. J Mater Civ Eng 25:1077–1088. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000652

    Article  Google Scholar 

  16. Zaumanis M, Mallick RB, Frank R (2014) 100% Recycled hot mix asphalt: a review and analysis. Resour Conserv Recycl 92:230–245. https://doi.org/10.1016/j.resconrec.2014.07.007

    Article  Google Scholar 

  17. Taha R, Ali G, Basma A, Turk OA (1999) Evaluation of reclaimed asphalt pavement aggregate in road bases and subbases. Transp Res Rec 1652:264–269. https://doi.org/10.3141/1652-33

    Article  Google Scholar 

  18. Su Y, Hossiney N, Tia M, Bergin M (2014) Mechanical properties assessment of concrete containing reclaimed asphalt pavement using the superpave indirect tensile strength test. J Test Eval 42:912–920. https://doi.org/10.1520/JTE20130093

    Article  Google Scholar 

  19. Tia M, Hossiney N, Su YM, Chen Y, Do TA (2012) Use of reclaimed asphalt pavement in concrete pavement slabs. Florida Department of Transportation, Technical report: 88115

    Google Scholar 

  20. Hossiney N, Tia M, Bergin MJ (2010) Concrete containing RAP for use in concrete pavement. Int J Pavement Res Technol 3:251–258

    Google Scholar 

  21. Su YM, Hossiney N, Tia M (2013) Indirect tensile strength of concrete containing reclaimed asphalt pavement using the superpave indirect tensile test. Adv Mat Res 723:368–375. https://doi.org/10.4028/www.scientific.net/AMR.723.368

    Article  Google Scholar 

  22. Su YM, Hossiney N, Tia M (2013) The analysis of air voids in concrete specimen using X-ray computed tomography. Proc. SPIE vol 8694. Nondestructive characterization for composite materials, aerospace engineering, civil infrastructure, and homeland security, 86940S. https://doi.org/10.1117/12.2012267

  23. Reig L, Tashima MM, Borrachero MV, Monzó J, Cheeseman CR, Payá J (2013) Properties and microstructure of alkali-activated red clay brick waste. Constr Build Mater 43:98–106. https://doi.org/10.1016/j.conbuildmat.2013.01.031

    Article  Google Scholar 

  24. Allahverdi A, Kani EN (2013) Use of construction and demolition waste (CDW) for alkali-activated or geopolymer cements. In: Handbook of recycled concrete and demolition waste, Woodhead Publishing

    Google Scholar 

  25. Komnitsas K, Zaharaki D, Vlachou A, Bartzas G, Galetakis M (2015) Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers. Adv Powder Technol 26:368–376. https://doi.org/10.1016/j.apt.2014.11.012

    Article  Google Scholar 

  26. Rakhimova NR, Rakhimov RZ (2015) Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste. Mater Des 85:324–331. https://doi.org/10.1016/j.matdes.2015.06.182

    Article  Google Scholar 

  27. Zaharaki D, Galetakis M, Komnitsas K (2016) Valorization of construction and demolition (C&D) and industrial wastes through alkali activation. Constr Build Mater 121:686–693. https://doi.org/10.1016/j.conbuildmat.2016.06.051

    Article  Google Scholar 

  28. Robayo RA, Mulford A, Munera J, de Gutiérrez RM (2016) Alternative cements based on alkali-activated red clay brick waste. Constr Build Mater 128:163–169. https://doi.org/10.1016/j.conbuildmat.2016.10.023

    Article  Google Scholar 

  29. Reig L, Sanz MA, Borrachero MV, Monzó J, Soriano L, Payá J (2017) Compressive strength and microstructure of alkali-activated mortars with high ceramic waste content. Ceram Int 43:13622–13634. https://doi.org/10.1016/j.ceramint.2017.07.072

    Article  Google Scholar 

  30. Robayo-Salazar RA, Rivera JF, de Gutiérrez RM (2017) Alkali-activated building materials made with recycled construction and demolition wastes. Constr Build Mater 149:130–138. https://doi.org/10.1016/j.conbuildmat.2017.05.122

    Article  Google Scholar 

  31. Robayo-Salazar RA, Mejía-Arcila JM, de Gutiérrez RM (2017) Eco-efficient alkali-activated cement based on red clay brick wastes suitable for the manufacturing of building materials. J Clean Prod 166:242–252. https://doi.org/10.1016/j.jclepro.2017.07.243

    Article  Google Scholar 

  32. Tuyan M, Andiç-Çakir O, Ramyar K (2018) Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer. Compos B Eng 135:242–252. https://doi.org/10.1016/j.compositesb.2017.10.013

    Article  Google Scholar 

  33. Sedira N, Castro-Gomes J, Magrinho M (2018) Red clay brick and tungsten mining waste-based alkali-activated binder: microstructural and mechanical properties. Constr Build Mater 190:1034–1048. https://doi.org/10.1016/j.conbuildmat.2018.09.153

    Article  Google Scholar 

  34. Rakhimova NR, Rakhimov RZ (2019) Toward clean cement technologies: a review on alkali-activated fly-ash cements incorporated with supplementary materials. J Non Cryst Solids 509:31–41. https://doi.org/10.1016/j.jnoncrysol.2019.01.025

    Article  Google Scholar 

  35. Zhao Y, Gao J, Liu C, Chen X, Xu Z (2020) The particle-size effect of waste clay brick powder on its pozzolanic activity and properties of blended cement. J Clean Prod 242:118521. https://doi.org/10.1016/j.jclepro.2019.118521

    Article  Google Scholar 

  36. Davidovits J, Davidovits M, Davidovits N (1994) Process for obtaining a geopolymeric alumino-silicate and products thus obtained. US Patent: 5,342,595

    Google Scholar 

  37. Khale D, Chaudhary R (2007) Mechanism of geopolymerization and factors influencing its development: a review. J Mater Sci 42:729–746. https://doi.org/10.1007/s10853-006-0401-4

    Article  Google Scholar 

  38. Pacheco-Torgal F, Castro-Gomes J, Jalali S (2008) Alkali-activated binders: a review. Part about materials and binders manufacture. Constr Build Mater 22:1315–1322. https://doi.org/10.1016/j.conbuildmat.2007.03.019

  39. Yahya Z, Abdullah MMAB, Hussin K, Ismail KN, Razak RA, Sandu AV (2015) Effect of solids-to-liquids, Na2SiO3-to-NaOH and curing temperature on the palm oil boiler ash (Si + Ca) geopolymerisation system. Materials 8:2227–2242. https://doi.org/10.3390/ma8052227

    Article  Google Scholar 

  40. Komnitsas K, Zaharaki D (2007) Geopolymerisation: a review and prospects for the mineral industry. Miner Eng 20:1261–1277

    Article  Google Scholar 

  41. Huseien GF, Mirza J, Ismail M, Ghoshal SK, Hussein AA (2017) Geopolymer mortars as sustainable repair material: a comprehensive review. Renew Sust Energ Rev 80:54–74. https://doi.org/10.1016/j.rser.2017.05.076

    Article  Google Scholar 

  42. Shoaei P, Musaeei HR, Mirlohi F, Ameri F, Bahrami N (2019) Waste ceramic powder- based geopolymer mortars: Effect of curing temperature and alkaline solution-to-binder ratio. Constr Build Mater 227:116686. https://doi.org/10.1016/j.conbuildmat.2019.116686

    Article  Google Scholar 

  43. Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV (2004) Brief review of development of geopolymer concrete. In: Invited Paper, George Hoff Symposium, American Concrete Institute. Las Vegas, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil Hossiney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balemba, C., Mirenge, B., Konde, D., Hossiney, N., Kumar, S.L., Sarath Chandra, K. (2021). A Review on Utilization of Construction and Demolition Waste (CDW) Toward Green and Circular Economy. In: Kumar Shukla, S., Raman, S.N., Bhattacharjee, B., Bhattacharjee, J. (eds) Advances in Geotechnics and Structural Engineering. Lecture Notes in Civil Engineering, vol 143. Springer, Singapore. https://doi.org/10.1007/978-981-33-6969-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6969-6_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6968-9

  • Online ISBN: 978-981-33-6969-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics