Skip to main content

The Challenges and Development Directions of Decellularized Materials

  • Chapter
  • First Online:
Decellularized Materials
  • 574 Accesses

Abstract

Expanded applications of decellularized materials (DMs) in all kinds of tissue repair and organ replacement have been discussed in the former chapters. DMs have exhibited outstanding superiority in tissue engineering and might be hopeful to achieve bigger success after further studies. In this chapter, some challenges and perspectives of DMs were proposed in detail including optimizing the preparation methods of DMs, furthering researching the composition of DMs, improving the mechanical properties of DMs, controlling the degradation rate of DMs, furthering promoting the bioactivity of DMs, and promoting clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakakibara S, Ishida Y, Hashikawa K, Yamaoka T, Terashi H. Intima/medulla reconstruction and vascular contraction-relaxation recovery for acellular small diameter vessels prepared by hyperosmotic electrolyte solution treatment. J Artif Organs. 2014;17:169–77.

    CAS  PubMed  Google Scholar 

  2. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wainwright JM, Czajka CA, Patel UB, Freytes DO, Tobita K, Gilbert TW, Badylak SF. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C Methods. 2010;16:525–32.

    CAS  PubMed  Google Scholar 

  4. Meyer SR, Chiu B, Churchill TA, Zhu L, Lakey JR, Ross DB. Comparison of aortic valve allograft decellularization techniques in the rat. J Biomed Mater Res A. 2006;79:254–62.

    PubMed  Google Scholar 

  5. Meezan E, Hjelle JT, Brendel K, Carlson EC. A simple, versatile, nondisruptive method for the isolation of morphologically and chemically pure basement membranes from several tissues. Life Sci. 1975;17:1721–32.

    CAS  PubMed  Google Scholar 

  6. Lumpkins SB, Pierre N, McFetridge PS. A mechanical evaluation of three decellularization methods in the design of a xenogeneic scaffold for tissue engineering the temporomandibular joint disc. Acta Biomater. 2008;4:808–16.

    PubMed  Google Scholar 

  7. Singh K, Gopinathan A, Sangeetha P, Kumar N, Singh KP, Raina OK. Development and clinical application of decellularized porcine SIS and cornea for the repair of corneal defects in animals. Indian J Anim Sci. 2016;86:1391–5.

    Google Scholar 

  8. Lopera HM, Griffiths LG. Antigen removal process preserves function of small diameter venous valved conduits, whereas SDS-decellularization results in significant valvular insufficiency. Acta Biomater. 2020;107:115–28.

    Google Scholar 

  9. Yang B, Zhang Y, Zhou L, Sun Z, Zheng J, Chen Y, Dai Y. Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Eng Part C Methods. 2010;16:1201–11.

    CAS  PubMed  Google Scholar 

  10. Brooker JE, Camison LB, Bykowski MR, Hurley ET, Yerneni SS, Campbell PG, Weiss LE, Mooney MP, Cray J, Gilbert JR, Cooper GM, Losee JE. Reconstruction of a calvarial wound complicated by infection: comparing the effects of biopatterned bone morphogenetic protein 2 and vascular endothelial growth factor. J Craniofac Surg. 2019;30:260–4.

    PubMed  Google Scholar 

  11. Cao G, Wang C, Fan Y, Li X. Biomimetic SIS-based biocomposites with improved biodegradability, antibacterial activity and angiogenesis for abdominal wall repair. Mater Sci Eng C Mater Biol Appl. 2020;109:110538.

    CAS  PubMed  Google Scholar 

  12. Lu WD, Zhang M, Wu ZS, Hu TH, Xu ZJ, Liu W, Hu YR. The performance of photooxidatively crosslinked acellular bovine jugular vein conduits in the reconstruction of connections between pulmonary arteries and right ventricles. Biomaterials. 2010;31:2934–43.

    PubMed  Google Scholar 

  13. Voges I, Brasen JH, Entenmann A, Scheid M, Scheewe J, Fischer G, Hart C, Andrade A, Pham HM, Kramer HH, Rickers C. Adverse results of a decellularized tissue-engineered pulmonary valve in humans assessed with magnetic resonance imaging. Eur J Cardiothorac Surg. 2013;44:e272–9.

    PubMed  Google Scholar 

  14. Simon P. Early failure of the tissue engineered porcine heart valve SYNERGRAFT™ in pediatric patients. Eur J Cardiothorac Surg. 2003;23:1002–6.

    CAS  PubMed  Google Scholar 

  15. Obata T, Tsuchiya T, Akita S, Kawahara T, Matsumoto K, Miyazaki T, Masumoto H, Kobayashi E, Niklason LE, Nagayasu T. Utilization of natural detergent potassium laurate for decellularization in lung bioengineering. Tissue Eng Part C Methods. 2019;25:459–71.

    CAS  PubMed  Google Scholar 

  16. Eivazkhani F, Abtahi NS, Tavana S, Mirzaeian L, Abedi F, Ebrahimi B, Montazeri L, Valojerdi MR, Fathi R. Evaluating two ovarian decellularization methods in three species. Mater Sci Eng C Mater Biol Appl. 2019;102:670–82.

    CAS  PubMed  Google Scholar 

  17. Ng WH, Ramasamy R, Yong YK, Ngalim SH, Lim V, Shaharuddin B, Tan JJ. Extracellular matrix from decellularized mesenchymal stem cells improves cardiac gene expressions and oxidative resistance in cardiac C-kit cells. Regen Ther. 2019;11:8–16.

    PubMed  PubMed Central  Google Scholar 

  18. Xia C, Mei S, Gu C, Zheng L, Fang C, Shi Y, Wu K, Lu T, Jin Y, Lin X, Chen P. Decellularized cartilage as a prospective scaffold for cartilage repair. Mater Sci Eng C Mater Biol Appl. 2019;101:588–95.

    CAS  PubMed  Google Scholar 

  19. Schmitt A, Csiki R, Tron A, Saldamli B, Tubel J, Florian K, Siebenlist S, Balmayor E, Burgkart R. Optimized protocol for whole organ decellularization. Eur J Med Res. 2017;22:31.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bourgine PE, Pippenger BE, Todorov A Jr, Tchang L, Martin I. Tissue decellularization by activation of programmed cell death. Biomaterials. 2013;34:6099–108.

    CAS  PubMed  Google Scholar 

  21. Jiang XJ, Wang XD. Cytochrome C-mediated apoptosis. Annu Rev Biochem. 2004;73:87–106.

    CAS  PubMed  Google Scholar 

  22. Lakhani SA, Masud A, Kuida K, Porter GA, Booth CJ, Mehal WZ, Inayat I, Flavell RA. Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science. 2006;311:847–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bhardwaj A, Aggarwal BB. Receptor-mediated choreography of life and death. J Clin Immunol. 2003;23:317–32.

    CAS  PubMed  Google Scholar 

  24. Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature. 2000;407:784–8.

    CAS  PubMed  Google Scholar 

  25. Ziegler U, Groscurth P. Morphological features of cell death. News Physiol Sci. 2004;19:124–8.

    CAS  PubMed  Google Scholar 

  26. Li F, Huang Q, Chen J, Peng YL, Roop DR, Bedford JS, Li CY. Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci Signal. 2010;3:ra13.

    PubMed  PubMed Central  Google Scholar 

  27. Cornelison RC, Wellman SM, Park JH, Porvasnik SL, Song YH, Wachs RA, Schmidt CE. Development of an apoptosis-assisted decellularization method for maximal preservation of nerve tissue structure. Acta Biomater. 2018;77:116–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Young BM, Shankar K, Tho CK, Pellegrino AR, Heise RL. Laminin-driven Epac/Rap1 regulation of epithelial barriers on decellularized matrix. Acta Biomater. 2019;100:223–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bi H, Ye K, Jin S. Proteomic analysis of decellularized pancreatic matrix identifies collagen V as a critical regulator for islet organogenesis from human pluripotent stem cells. Biomaterials. 2020;233:119673.

    CAS  PubMed  Google Scholar 

  30. Rosmark O, Ahrman E, Muller C, Rendin LE, Eriksson L, Malmstrom A, Hallgren O, Larsson-Callerfelt AK, Westergren-Thorsson G, Malmstrom J. Quantifying extracellular matrix turnover in human lung scaffold cultures. Sci Rep. 2018;8:5409.

    PubMed  PubMed Central  Google Scholar 

  31. Zhou HY, Kitano K, Ren X, Rajab TK, Wu M, Gilpin SE, Wu T, Baugh L, Black LD, Mathisen DJ, Ott HC. Bioengineering human lung grafts on porcine matrix. Ann Surg. 2018;267:590–8.

    PubMed  Google Scholar 

  32. Rowland CR, Colucci LA, Guilak F. Fabrication of anatomically-shaped cartilage constructs using decellularized cartilage-derived matrix scaffolds. Biomaterials. 2016;91:57–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Koval M, Ward C, Findley MK, Roser-Page S, Helms MN, Roman J. Extracellular matrix influences alveolar epithelial claudin expression and barrier function. Am J Respir Cell Mol Biol. 2010;42:172–80.

    CAS  PubMed  Google Scholar 

  34. Godin LM, Sandri BJ, Wagner DE, Meyer CM, Price AP, Akinnola I, Weiss DJ, Panoskaltsis-Mortari A. Decreased laminin expression by human lung epithelial cells and fibroblasts cultured in acellular lung scaffolds from aged mice. PLoS One. 2016;11:e0150966.

    PubMed  PubMed Central  Google Scholar 

  35. Lee CR, Grodzinsky AJ, Spector M. The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis. Biomaterials. 2001;22:3145–54.

    CAS  PubMed  Google Scholar 

  36. Cheng N-C, Estes BT, Awad HA, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A. 2009;15:231–41.

    CAS  PubMed  Google Scholar 

  37. Hoganson DM, O'Doherty EM, Owens GE, Harilal DO, Goldman SM, Bowley CM, Neville CM, Kronengold RT, Vacanti JP. The retention of extracellular matrix proteins and angiogenic and mitogenic cytokines in a decellularized porcine dermis. Biomaterials. 2010;31:6730–7.

    CAS  PubMed  Google Scholar 

  38. Dahl SLM, Koh J, Prabhakar V, Niklason LE. Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant. 2003;12:659–66.

    PubMed  Google Scholar 

  39. Dimitrievska S, Cai C, Weyers A, Balestrini JL, Lin T, Sundaram S, Hatachi G, Spiegel DA, Kyriakides TR, Miao J, Li G, Niklason LE, Linhardt RJ. Click-coated, heparinized, decellularized vascular grafts. Acta Biomater. 2015;13:177–87.

    CAS  PubMed  Google Scholar 

  40. Ventura RD, Padalhin AR, Kim B, Park M, Lee BT. Evaluation of bone regeneration potential of injectable extracellular matrix (ECM) from porcine dermis loaded with biphasic calcium phosphate (BCP) powder. Mater Sci Eng C Mater Biol Appl. 2020;110:110663.

    CAS  PubMed  Google Scholar 

  41. La W-G, Jang J, Kim BS, Lee MS, Cho D-W, Yang HS. Systemically replicated organic and inorganic bony microenvironment for new bone formation generated by a 3D printing technology. RSC Adv. 2016;6:11546–53.

    CAS  Google Scholar 

  42. Ghassemi T, Saghatolslami N, Matin MM, Gheshlaghi R, Moradi A. CNT-decellularized cartilage hybrids for tissue engineering applications. Biomed Mater (Bristol, Engl). 2017;12:065008.

    Google Scholar 

  43. Arnold GA, Mathews KG, Roe S, Mente P, Seaboch T. Biomechanical comparison of four soft tissue replacement materials: an in vitro evaluation of single and multilaminate porcine small intestinal submucosa, canine fascia lata, and polypropylene mesh. Vet Surg. 2009;38:834–44.

    PubMed  Google Scholar 

  44. Cao G, Huang Y, Li K, Fan Y, Xie H, Li X. Small intestinal submucosa: superiority, limitations and solutions, and its potential to address bottlenecks in tissue repair. J Mater Chem B. 2019;7:5038–55.

    CAS  PubMed  Google Scholar 

  45. Mondalek FG, Lawrence BJ, Kropp BP, Grady BP, Fung KM, Madihally SV, Lin HK. The incorporation of poly(lactic-co-glycolic) acid nanoparticles into porcine small intestinal submucosa biomaterials. Biomaterials. 2008;29:1159–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Al-Nasiry S, Geusens N, Hanssens M, Luyten C, Pijnenborg R. The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod. 2007;22:1304–9.

    CAS  PubMed  Google Scholar 

  47. Rowland CR, Lennon DP, Caplan AI, Guilak F. The effects of crosslinking of scaffolds engineered from cartilage ECM on the chondrogenic differentiation of MSCs. Biomaterials. 2013;34:5802–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang M, Li YQ, Cao J, Gong M, Zhang Y, Chen X, Tian MX, Xie HQ. Accelerating effects of genipin-crosslinked small intestinal submucosa for defected gastric mucosa repair. J Mater Chem B. 2017;5:7059–71.

    CAS  PubMed  Google Scholar 

  49. Pinheiro A, Cooley A, Liao J, Prabhu R, Elder S. Comparison of natural crosslinking agents for the stabilization of xenogenic articular cartilage. J Orthop Res. 2016;34:1037–46.

    CAS  PubMed  Google Scholar 

  50. Xiang JX, Zheng XL, Gao R, Wu WQ, Zhu XL, Li JH, Lv Y. Liver regeneration using decellularized splenic scaffold: a novel approach in tissue engineering. Hepatobiliary Pancreat Dis Int. 2015;14:502–8.

    PubMed  Google Scholar 

  51. Zhou Z, Long D, Hsu CC, Liu H, Chen L, Slavin B, Lin H, Li X, Tang J, Yiu S, Tuffaha S, Mao HQ. Nanofiber-reinforced decellularized amniotic membrane improves limbal stem cell transplantation in a rabbit model of corneal epithelial defect. Acta Biomater. 2019;97:310–20.

    CAS  PubMed  Google Scholar 

  52. Syed O, Kim JH, Keskin-Erdogan Z, Day RM, El-Fiqi A, Kim HW, Knowles JC. SIS/aligned fibre scaffold designed to meet layered oesophageal tissue complexity and properties. Acta Biomater. 2019;99:181–95.

    CAS  PubMed  Google Scholar 

  53. Yang Y, Lei D, Zou H, Huang S, Yang Q, Li S, Qing FL, Ye X, You Z, Zhao Q. Hybrid electrospun rapamycin-loaded small-diameter decellularized vascular grafts effectively inhibit intimal hyperplasia. Acta Biomater. 2019;97:321–32.

    CAS  PubMed  Google Scholar 

  54. Gupta SK, Dinda AK, Potdar PD, Mishra NC. Modification of decellularized goat-lung scaffold with chitosan/nanohydroxyapatite composite for bone tissue engineering applications. Biomed Res Int. 2013;2013:651945.

    PubMed  PubMed Central  Google Scholar 

  55. Bi XW, Li LH, Mao ZN, Liu B, Yang LB, He W, Fan YB, Li XM. The effects of silk layer-by-layer surface modification on the mechanical and structural retention of extracellular matrix scaffolds. Biomater Sci. 2020;8:4026–38.

    CAS  PubMed  Google Scholar 

  56. Cao Z, Dou C, Dong S. Scaffolding biomaterials for cartilage regeneration. J Nanomater. 2014;2014:1–8.

    Google Scholar 

  57. Wassenaar JW, Braden RL, Osborn KG, Christman KL. Modulating in vivo degradation rate of injectable extracellular matrix hydrogels. J Mater Chem B. 2016;4:2794–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Alberti KA, Xu Q. Biocompatibility and degradation of tendon-derived scaffolds. Regen Biomater. 2016;3:1–11.

    CAS  PubMed  Google Scholar 

  59. Zhai W, Chang J, Lin K, Wang J, Zhao Q, Sun X. Crosslinking of decellularized porcine heart valve matrix by procyanidins. Biomaterials. 2006;27:3684–90.

    CAS  PubMed  Google Scholar 

  60. Zhao JY, Bass KD. Skeletal muscle regeneration by extracellular matrix biological scaffold: a case report. J Wound Care. 2018;27:S11–4.

    PubMed  Google Scholar 

  61. Wu RX, He XT, Zhu JH, Yin Y, Li X, Liu X, Chen FM. Modulating macrophage responses to promote tissue regeneration by changing the formulation of bone extracellular matrix from filler particles to gel bioscaffolds. Mater Sci Eng C. 2019;101:330–40.

    CAS  Google Scholar 

  62. Bhrany AD, Lien CJ, Beckstead BL, Futran ND, Muni NH, Giachelli CM, Ratner BD. Crosslinking of an oesophagus acellular matrix tissue scaffold. J Tissue Eng Regen Med. 2008;2:365–72.

    CAS  PubMed  Google Scholar 

  63. Liu X, Wang J, Dong F, Song P, Tian S, Li H, Hou Y. Cytocompatibility and biologic characteristics of synthetic scaffold materials of rabbit acellular vascular matrix combining with human-like collagen I. J Biomater Appl. 2017;32:463–71.

    CAS  PubMed  Google Scholar 

  64. Lee JS, Lee K, Moon SH, Chung HM, Lee JH, Um SH, Kim DI, Cho SW. Mussel-inspired cell-adhesion peptide modification for enhanced endothelialization of decellularized blood vessels. Macromol Biosci. 2014;14:1181–9.

    CAS  PubMed  Google Scholar 

  65. Lee H, Ju YM, Kim I, Elsangeedy E, Lee JH, Yoo JJ, Atala A, Lee SJ. A novel decellularized skeletal muscle-derived ECM scaffolding system for in situ muscle regeneration. Methods. 2020;171:77–85.

    CAS  PubMed  Google Scholar 

  66. Liang Y, Idrees E, Szojka ARA, Andrews SHJ, Kunze M, Mulet-Sierra A, Jomha NM, Adesida AB. Chondrogenic differentiation of synovial fluid mesenchymal stem cells on human meniscus-derived decellularized matrix requires exogenous growth factors. Acta Biomater. 2018;80:131–43.

    CAS  PubMed  Google Scholar 

  67. Tan B, Wang M, Chen X, Hou J, Chen X, Wang Y, Li-Ling J, Xie H. Tissue engineered esophagus by copper--small intestinal submucosa graft for esophageal repair in a canine model. Sci China Life Sci. 2014;57:248–55.

    CAS  PubMed  Google Scholar 

  68. Valente P, Gomes C, Tomada N. Small intestinal submucosa grafting for peyronie disease: outcomes and patient satisfaction. Urology. 2017;100:117–24.

    PubMed  Google Scholar 

  69. Rashidbenam Z, Jasman MH, Hafez P, Tan GH, Goh EH, Fam XI, Ho CCK, Zainuddin ZM, Rajan R, Nor FM, Shuhaili MA, Kosai NR, Imran FH, Ng MH. Overview of urethral reconstruction by tissue engineering: current strategies, clinical status and future direction. Tissue Eng Regen Med. 2019;16:365–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Heath DE. A review of decellularized extracellular matrix biomaterials for regenerative engineering applications. Regen Eng Transl Med. 2019;5:155–66.

    CAS  Google Scholar 

  71. Parmaksiz M, Dogan A, Odabas S, Elcin AE, Elcin YM. Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Biomed Mater (Bristol, Engl). 2016;11:022003.

    Google Scholar 

  72. Guruswamy Damodaran R, Vermette P. Tissue and organ decellularization in regenerative medicine. Biotechnol Prog. 2018;34:1494–505.

    CAS  PubMed  Google Scholar 

  73. Maisel Lotan A, Ben Yehuda D, Allweis TM, Scheflan M. Comparative study of meshed and nonmeshed acellular dermal matrix in immediate breast reconstruction. Plast Reconstr Surg. 2019;144:1045–53.

    CAS  PubMed  Google Scholar 

  74. Wang L, Li L, Lou W. Repair of a cervical skin defect using xenogeneic acellular dermal matrix in a patient with advanced laryngeal carcinoma. J Laryngol Otol. 2015;129:715–7.

    CAS  PubMed  Google Scholar 

  75. Ali M, Kumar Pr A, Yoo JJ, Zahran F, Atala A, Lee SJ. A photo-crosslinkable kidney ECM-derived bioink accelerates renal tissue formation. Adv Healthc Mater. 2019;8:e1800992.

    PubMed  PubMed Central  Google Scholar 

  76. Turchan A, Rochman TF, Ibrahim A, Fauziah D, Wahyuhadi J, Parenrengi MA, Fauzi AA, Sufarnap E, Bajamal AH, Ferdiansyah, Suroto H, Purwati, Rantam FA, Paramadini AW, Lumenta CB. Duraplasty using amniotic membrane versus temporal muscle fascia: a clinical comparative study. J Clin Neurosci. 2018;50:272–6.

    PubMed  Google Scholar 

  77. Xu Q, Chen C, Xu Z, Chen F, Yu Y, Hong X, Xu S, Chen J, Ding Q, Chen H. Ureteral reconstruction with decellularized small intestinal submucosa matrix for ureteral stricture: a preliminary report of two cases. Asian J Urol. 2020;7:51–5.

    PubMed  Google Scholar 

  78. Yao Q, Zheng YW, Lan QH, Kou L, Xu HL, Zhao YZ. Recent development and biomedical applications of decellularized extracellular matrix biomaterials. Mater Sci Eng C Mater Biol Appl. 2019;104:109942.

    CAS  PubMed  Google Scholar 

  79. Xing H, Lee H, Luo L, Kyriakides TR. Extracellular matrix-derived biomaterials in engineering cell function. Biotechnol Adv. 2019;42:107421.

    PubMed  Google Scholar 

  80. Rajab TK, O'Malley TJ, Tchantchaleishvili V. Decellularized scaffolds for tissue engineering: current status and future perspective. Artif Organs. 2020;44(10):1031–43. https://doi.org/10.1111/aor.13701.

    Article  PubMed  Google Scholar 

  81. Mosala Nezhad Z, Poncelet A, de Kerchove L, Gianello P, Fervaille C, El Khoury G. Small intestinal submucosa extracellular matrix (CorMatrix(R)) in cardiovascular surgery: a systematic review. Interact Cardiovasc Thorac Surg. 2016;22:839–50.

    PubMed  PubMed Central  Google Scholar 

  82. Macchiarini P, Birchall M, Hollander A, Mantero S, Conconi MT. Clinical transplantation of a tissue-engineered airway. Lancet. 2009;373:781.

    Google Scholar 

  83. otti AG, Jaus MO, Daniel Barale SB, Comin C, Lavorini F, Fontana G, Sibila O, Rombola G, Jungebluth P, Macchiarini P. The first tissue-engineered airway transplantation: 5-year follow-up results. Lancet. 2014;383:238–44.

    Google Scholar 

  84. Chun YS, Verma K, Rosen H, Lipsitz S, Morris D, Kenney P, Eriksson E. Implant-based breast reconstruction using acellular dermal matrix and the risk of postoperative complications. Plast Reconstr Surg. 2010;125:429–36.

    CAS  PubMed  Google Scholar 

  85. Wang F, Sbitany H. Acellular dermal matrix-assisted prosthetic breast reconstruction: efficacy and morbidity. In: Shiffman M, editor. Breast reconstruction. Cham: Springer; 2016. p. 1053–69.

    Google Scholar 

  86. Van Nieuwenhove I, Tytgat L, Ryx M, Blondeel P, Stillaert F, Thienpont H, Ottevaere H, Dubruel P, Van Vlierberghe S. Soft tissue fillers for adipose tissue regeneration: from hydrogel development toward clinical applications. Acta Biomater. 2017;63:37–49.

    PubMed  Google Scholar 

  87. Mohiuddin OA, Campbell B, Poche JN, Thomas-Porch C, Hayes DA, Bunnell BA, Gimble JM. Decellularized adipose tissue: biochemical composition, in vivo analysis and potential clinical applications. Adv Exp Med Biol. 2020;1212:57–70.

    CAS  PubMed  Google Scholar 

  88. Taylor DA, Sampaio LC, Ferdous Z, Gobin AS, Taite LJ. Decellularized matrices in regenerative medicine. Acta Biomater. 2018;74:74–89.

    CAS  PubMed  Google Scholar 

  89. Park JY, Lee TG, Kim JY, Lee MC, Chung YK, Lee WJ. Acellular dermal matrix to treat full thickness skin defects: follow-up subjective and objective skin quality assessments. Arch Craniofac Surg. 2014;15:14.

    PubMed  PubMed Central  Google Scholar 

  90. Sun Y, Yan L, Chen S, Pei M. Functionality of decellularized matrix in cartilage regeneration: a comparison of tissue versus cell sources. Acta Biomater. 2018;74:56–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Da LC, Huang YZ, Xie HQ. Progress in development of bioderived materials for dermal wound healing. Regen Biomater. 2017;4:325–34.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiqi Xie or Xiaoming Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liao, J., Da, L., Xu, B., Xie, H., Li, X. (2021). The Challenges and Development Directions of Decellularized Materials. In: Li, X., Xie, H. (eds) Decellularized Materials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6962-7_8

Download citation

Publish with us

Policies and ethics