Skip to main content

The Decellularization of Whole Organs

  • Chapter
  • First Online:
Decellularized Materials

Abstract

Since the development of tissue engineering, many mature decellularization schemes have been formed for different organs. The purpose of decellularization is to remove immunogenic components (such as alpha-Gal epitopes) and cellular components from the organ while retaining the inherent characteristics of natural extracellular matrix (ECM). The efficiency of removal of cells from the organs depends on the methods of decellularization. The commonly used decellularization methods can be divided into physical methods, chemical methods, and enzymatic hydrolysis methods according to the different reagents or conditions used. In the process of whole-organ decellularization, perfusion decellularization is currently the most widely used method and one of the safest and most effective decellularization methods. Each of these treatments affects the biochemical composition, tissue ultrastructure, mechanical behavior of the remaining ECM scaffold and detergent residue. This chapter presents an overview of the decellularization of different whole organs, including heart, lung, liver, kidney, pancreas, intestine, and others. Intended as a broad-ranging reference, this chapter will be of value for those concerned with the study of tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–9.

    Google Scholar 

  2. Gupta SK, Mishra NC, Dhasmana A. Decellularization Methods for Scaffold Fabrication. Methods Mol Biol. 2018;1577:1–10.

    Google Scholar 

  3. Guler S, Aslan B, Hosseinian P, Aydin HM. Supercritical carbon dioxide-assisted Decellularization of aorta and cornea. Tissue Eng Part C Methods. 2017;23:540–7.

    Google Scholar 

  4. Struecker B, Butter A, Hillebrandt K, Polenz D, Reutzel-Selke A, Tang P, et al. Improved rat liver decellularization by arterial perfusion under oscillating pressure conditions. J Tissue Eng Regen Med. 2017;11:531–41.

    Google Scholar 

  5. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lü WD, Zhang L, Wu CL, Liu ZG, Lei GY, Liu J, et al. Development of an acellular tumor extracellular matrix as a three-dimensional scaffold for tumor engineering. PLoS One. 2014;9:e103672.

    Google Scholar 

  7. Morris AH, Chang J, Kyriakides TR. Inadequate processing of decellularized dermal matrix reduces cell viability in vitro and increases apoptosis and acute inflammation in vivo. BioRes Open Access. 2016;5:177–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jamur MC, Oliver C. Permeabilization of cell membranes. Methods Mol Biol. 2010;588:63–6.

    Google Scholar 

  9. Simões IN, Vale P, Soker S, Atala A, Keller D, Noiva R, et al. Acellular urethra bioscaffold: decellularization of whole urethras for tissue engineering applications. Sci Rep. 2017;7:1–13.

    Google Scholar 

  10. Liem PH, Morimoto N, Ito R, Kawai K, Suzuki S. Autologous skin reconstruction by combining epidermis and acellular dermal matrix tissue derived from the skin of giant congenital melanocytic nevi. J Artif Organs. 2013;16:332–42.

    Article  CAS  PubMed  Google Scholar 

  11. Hellström M, El-Akouri RR, Sihlbom C, Olsson BM, Lengqvist J, Bäckdahl H, et al. Towards the development of a bioengineered uterus: comparison of different protocols for rat uterus decellularization. Acta Biomater. 2014;10:5034–42.

    Article  PubMed  Google Scholar 

  12. Rodi PM, Gianello MB, Corregido MC, Gennaro AM. Comparative study of the interaction of CHAPS and triton X-100 with the erythrocyte membrane. Biochim Biophys Acta. 2014;1838:859–66.

    Article  CAS  PubMed  Google Scholar 

  13. Brown BN, Freund JM, Han L, Rubin JP, Reing JE, Jeffries EM, et al. Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix. Tissue Eng Part C Methods. 2011;17:411–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology. 2011;53:604–17.

    Article  CAS  PubMed  Google Scholar 

  15. Sullivan DC, Mirmalek-Sani SH, Deegan DB, Baptista PM, Aboushwareb T, Atala A, et al. Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials. 2012;33:7756–64.

    Google Scholar 

  16. Hillebrandt K, Polenz D, Butter A, Tang P, Reutzel-Selke A, Andreou A, et al. Procedure for decellularization of rat livers in an oscillating-pressure perfusion device. J Visual Exp. 2015:e53029.

    Google Scholar 

  17. Elebring E, Kuna VK, Kvarnström N, Sumitran-Holgersson S. Cold-perfusion decellularization of whole-organ porcine pancreas supports human fetal pancreatic cell attachment and expression of endocrine and exocrine markers. J Tissue Eng. 2017;8:2041731417738145.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Park SM, Yang S, Rye S-M, Choi SW. Effect of pulsatile flow perfusion on decellularization. BioMed Central. 2018;17:1–10.

    Google Scholar 

  19. Say S, Dugos N, Roces S, Mondragon JM. Effect of sonication power on perfusion decellularization of cadaveric porcine kidney. MATEC Web of Conferences. 2019;268:01009.

    Google Scholar 

  20. Manalastas TM, Dugos N, Ramos G, Mondragon JM. Effect of decellularization parameters on the efficient production of kidney bioscaffolds. Appl Biochem Biotechnol. 2020. https://doi.org/10.1007/s12010-020-03338-2.

  21. Schilling BK, Lamberti KK, Snowden MJ, Baker JS, Byrd K, Komatsu C, et al. Design and fabrication of an automatable, 3D printed perfusion device for tissue infusion and perfusion engineering. Tissue Eng Part A. 2020;26:253–64.

    Google Scholar 

  22. Willemse J, Verstegen MMA, Vermeulen A, Schurink IJ, Roest HP, Laan LJW, et al. Fast, robust and effective decellularization of whole human livers using mild detergents and pressure controlled perfusion. Mat Sci Eng C. 2020;108:110200.

    Google Scholar 

  23. Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A. 2008;14:1835–42.

    Google Scholar 

  24. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675–83.

    Google Scholar 

  25. Mirmalek-Sani SH, Sullivan DC, Zimmerman C, Shupe TD, Petersen BE. Immunogenicity of decellularized porcine liver for bioengineered hepatic tissue. Am J Pathol. 2013;183:558–65.

    Google Scholar 

  26. Ji R, Zhang N, You N, Li Q, Liu W, Jiang N, et al. The differentiation of MSCs into functional hepatocyte-like cells in a liver biomatrix scaffold and their transplantation into liver-fibrotic mice. Biomaterials. 2012;33:8995–9008.

    Google Scholar 

  27. Sabetkish S, Kajbafzadeh AM, Sabetkish N, Khorramirouz R, Akbarzadeh A, Seyedian SL, et al. Whole-organ tissue engineering: Decellularization and recellularization of three-dimensional matrix liver scaffolds. J Biomed Mater Res A. 2015;103:1498–508.

    Google Scholar 

  28. Rosso F, Giordano A, Barbarisi M, Barbarisi A. From cell–ECM interactions to tissue engineering. J Cell Physiol. 2004;199:174–80.

    Article  CAS  PubMed  Google Scholar 

  29. Li Q, Uygun BE, Geerts S, Ozer S, Scalf M, Gilpin SE, et al. Proteomic analysis of naturally-sourced biological scaffolds. Biomaterials. 2016;75:37–46.

    Article  CAS  PubMed  Google Scholar 

  30. Mazza G, Rombouts K, Rennie Hall A, Urbani L, Vinh Luong T, Al-Akkad W, et al. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci Rep. 2015;5:13079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21.

    Google Scholar 

  32. Mattei G, Di Patria V, Tirella A, Alaimo A, Elia G, Corti A, et al. Mechanostructure and composition of highly reproducible decellularized liver matrices. Acta Biomater. 2014;10:875–82.

    Google Scholar 

  33. Everwien H, Ariza de Schellenberger A, Haep N, Tzschätzsch H, Pratschke J, Sauer IM, et al. Magnetic resonance elastography quantification of the solid-to-fluid transition of liver tissue due to decellularization. J Mech Behav Biomed Mater. 2020;104:103640.

    Article  CAS  PubMed  Google Scholar 

  34. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation. 2015;131:e29–322.

    Google Scholar 

  35. Rossano JW, Cabrera AG, Jefferies JL, Naim MP, Humlicek T. Pediatric cardiac Intensive Care Society 2014 consensus statement: pharmacotherapies in cardiac critical care chronic heart failure. Pediat Crit Care Med. 2016;17:S20–34.

    Article  Google Scholar 

  36. Tonsho M, Michel S, Ahmed Z, Alessandrini A, Madsen JC. Heart transplantation: challenges facing the field. Cold Spring Harb Perspect Med. 2014;4:a015636.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Harken DE, Soroff HS, Taylor WJ, Lefemine AA, Gupta SK, Lunzer S. Partial and complete prostheses in aortic insufficiency. J Thorac Cardiovasc Surg. 1960;40:744–62.

    Article  CAS  PubMed  Google Scholar 

  38. Bonhoeffer P, Boudjemline Y, Saliba Z, Merckx J, Aggoun Y, Bonnet D, et al. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet. 2000;356:1403–5.

    Google Scholar 

  39. Ross DN. Replacement of aortic and mitral valves with A pulmonary autograft. Lancet. 1967;2:956–8.

    Google Scholar 

  40. Wainwright JM, Czajka CA, Patel UB, Freytes DO, Tobita K, Gilbert TW, et al. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C Methods. 2010;16:525–32.

    Article  CAS  PubMed  Google Scholar 

  41. Cebotari S, Lichtenberg A, Tudorache I, Hilfiker A, Mertsching H, Leyh R,et al. Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation. 2006;114:I132–7.

    Google Scholar 

  42. Cebotari S, Tudorache I, Ciubotaru A, Boethig D, Sarikouch S, Goerler A, et al. Use of fresh decellularized allografts for pulmonary valve replacement may reduce the reoperation rate in children and young adults: early report. Circulation. 2011;124:S115–23.

    Google Scholar 

  43. Siddiqui RF, Abraham JR, Butany J. Bioprosthetic heart valves: modes of failure. Histopathology. 2009;55:135–44.

    Google Scholar 

  44. Wong ML, Griffiths LG. Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization. Acta Biomater. 2014;10:1806–16. 

    Google Scholar 

  45. Liao J, Joyce EM, Sacks MS. Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials. 2008;29:1065–74.

    Google Scholar 

  46. Zhou J, Fritze O, Schleicher M, Wendel HP, Schenke-Layland K, Harasztosi C, et al. Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials. 2010;31:2549–54.

    Google Scholar 

  47. Weymann A, Loganathan S, Takahashi H, Schies C, Claus B, Hirschberg K, et al. Development and evaluation of a perfusion decellularization porcine heart model–generation of 3-dimensional myocardial neoscaffolds. Circul J. 2011;4:852–60.

    Google Scholar 

  48. Akhyari P, Aubin H, Gwanmesia P, Barth M, Hoffmann S, Huelsmann J, et al. The quest for an optimized protocol for whole-heart decellularization. A comparison of three popular and a novel Decellularization technique and their diverse effects on crucial extracellular matrix qualities. Tissue Eng Part C Methods. 2011;17:915–26.

    Google Scholar 

  49. Remlinger NT, Wearden PD, Gilbert TW. Procedure for decellularization of porcine heart by retrograde coronary perfusion. J Visual Exp. 2012;70:e50059-e.

    Google Scholar 

  50. Weymann A, Patil NP, Sabashnikov A, Jungebluth P, Korkmaz S, Li S, et al. Bioartificial heart: a human-sized porcine model--the way ahead. PLoS One. 2014;9:e111591.

    Google Scholar 

  51. Oberwallner B, Brodarac A, Choi YH, Saric T, Anić P, Morawietz L, et al. Preparation of cardiac extracellular matrix scaffolds by decellularization of human myocardium. J Biomed Mater Res A. 2014;102:3263–72.

    Google Scholar 

  52. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–43.

    Google Scholar 

  53. Dong J, Li Y, Mo X. The study of a new detergent (octyl-glucopyranoside) for decellularizing porcine pericardium as tissue engineering scaffold. J Surg Res. 2013;183:56–67.

    Article  CAS  PubMed  Google Scholar 

  54. Cicha I, Rüffer A, Cesnjevar R, Glöckler M, Agaimy A, Daniel WG, et al. Early obstruction of decellularized xenogenic valves in pediatric patients: involvement of inflammatory and fibroproliferative processes. Cardiovasc Pathol. 1900;20:222–31.

    Google Scholar 

  55. Rice JJ, Martino MM, De Laporte L, Tortelli F, Briquez PS, Hubbell JA. Engineering the regenerative microenvironment with biomaterials. Adv Healthc Mater. 2013;2:57–71.

    Article  CAS  PubMed  Google Scholar 

  56. Wong ML, Leach JK, Athanasiou KA, Griffiths LG. The role of protein solubilization in antigen removal from xenogeneic tissue for heart valve tissue engineering. Biomaterials. 2011;32:8129–38.

    Article  CAS  PubMed  Google Scholar 

  57. Kawasaki T, Kirita Y, Kami D, Kitani T, Ozaki C, Itakura Y, et al. Novel detergent for whole organ tissue engineering. J Biomed Mater Res A. 2015;103:3364–73.

    Article  CAS  PubMed  Google Scholar 

  58. Hülsmann J, Aubin H, Bandesha ST, Kranz A, Stoldt VR, Lichtenberg A, et al. Rheology of perfusates and fluid dynamical effects during whole organ decellularization: a perspective to individualize decellularization protocols for single organs. Biofabrication. 2015;7:035008.

    Article  PubMed  Google Scholar 

  59. Lee PF, Chau E, Cabello R, Yeh AT, Sampaio LC, Gobin AS, et al. Inverted orientation improves decellularization of whole porcine hearts. Acta Biomater. 2017;49:181–91.

    Google Scholar 

  60. Garcia O, Carraro G, Navarro S, Bertoncello I, McQualter J, Driscoll B, et al. Cell-based therapies for lung disease. Br Med Bull. 2012;101:147–61.

    Google Scholar 

  61. Guler S, Aydin HM, Lü LX, Yang Y. Improvement of decellularization efficiency of porcine aorta using dimethyl sulfoxide as a penetration enhancer. Artif Organs. 2018;42:219–30.

    Google Scholar 

  62. Peralta M, Steed E, Harlepp S, González-Rosa JM, Monduc F, Ariza-Cosano A, et al. Heartbeat-driven pericardiac fluid forces contribute to epicardium morphogenesis. Curr Biol. 2013;23:1726–35.

    Google Scholar 

  63. Garanich JS, Mathura RA, Shi Z-D, Tarbell JM. Effects of fluid shear stress on adventitial fibroblast migration: implications for flow-mediated mechanisms of arterialization and intimal hyperplasia. Am J Phys Heart Circ Phys. 2007;292:H3128–35.

    Google Scholar 

  64. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233-43.  

    Google Scholar 

  65. Pereira RHA, Prado AR, Caro LFCD, Zanardo TÉC, Alencar AP, Nogueira BV. A non-linear mathematical model using optical sensor to predict heart decellularization efficacy. Sci Rep. 2019;9:12211.

    Google Scholar 

  66. Reddy N, Reddy R, Jiang Q. Crosslinking biopolymers for biomedical applications. Trends Biotechnol. 2015;33:362–9.

    Google Scholar 

  67. Assmann A, Delfs C, Munakata H, Schiffer F, Horstkötter K, Huynh K, et al. Acceleration of autologous in vivo recellularization of decellularized aortic conduits by fibronectin surface coating. Biomaterials. 2013;34:6015–26.

    Google Scholar 

  68. Lal MK, Manktelow BN, Draper ES, Field DJ. Chronic lung disease of prematurity and intrauterine growth retardation: a population-based study. Pediatrics. 2003;111:483–7.

    Google Scholar 

  69. Prakash YS, Tschumperlin DJ, Stenmark KR. Coming to terms with tissue engineering and regenerative medicine in the lung. Am J Physiol Lung Cell Mol Physiol. 2015;309:L625–38.

    Google Scholar 

  70. Hardy JD, Webb WR, Dalton ML Jr, Walker GR Jr. Lung homotransplantation in man: report of the initial case. JAMA. 1963;186:1065–74.

    Article  CAS  PubMed  Google Scholar 

  71. Pinsker KL, Koerner SK, Kamholz SL, Hagstrom JW, Veith FJ. Effect of donor bronchial length on healing: a canine model to evaluate bronchial anastomotic problems in lung transplantation. J Thorac Cardiovasc Surg. 1979;77:669–73.

    Google Scholar 

  72. Hayama M, Date H, Oto T, Aoe M, Andou A, Shimizu N. Improved lung function by means of retrograde flush in canine lung transplantation with non-heart-beating donors. J Thorac Cardiovasc Surg. 2003;125:901–6.

    Article  PubMed  Google Scholar 

  73. Veith FJ, Kamholz SL, Mollenkopf FP, Montefusco CM. Lung transplantation 1983. Transplantation. 1983;35:271–8.

    Article  CAS  PubMed  Google Scholar 

  74. Yusen RD, Edwards LB, Kucheryavaya AY, Benden C, Dipchand AI, Goldfarb SB, et al. The registry of the International Society for Heart and Lung Transplantation: thirty-second official adult lung and heart-lung transplantation report-2015; focus theme: early graft failure. J Heart Lung Transplant. 2015;34:1264–77.

    Article  PubMed  Google Scholar 

  75. Mallory GB, Spray TL. Paediatric lung transplantation. Eur Respir J. 2004;24:839–45.

    Article  CAS  PubMed  Google Scholar 

  76. Khan MS, Heinle JS, Adachi I, Shirkey B, Schecter MG, Mallory GB, et al. Is lung transplantation survival better in infants? Analysis of over 80 infants. J Heart Lung Transplant. 2013;32:44–9.

    Google Scholar 

  77. Shigemura N, Hattler B, Bermudez C, McCurry KR, Toyoda Y. Impact of graft volume reduction for oversized grafts on outcome after lung transplantation in recipients with end-stage restrictive pulmonary diseases. J Heart Lung Transplant. 2009;28:130–4.

    Google Scholar 

  78. Shigemura N, D'Cunha J, Bhama JK, Shiose A, Abou El Ela A, Hackmann A, et al. Lobar lung transplantation: a relevant surgical option in the current era of lung allocation score. Ann Thorac Surg. 2013;96:451–6.

    Google Scholar 

  79. Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med. 2010;16:927–33.

    Google Scholar 

  80. Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, Gavrilov K, et al. Tissue-engineered lungs for in vivo implantation. Science. 2010;329:538–41.

    Google Scholar 

  81. Bonvillain RW, Danchuk S, Sullivan DE, Betancourt AM, Semon JA, Eagle ME, et al. A nonhuman primate model of lung regeneration: detergent-mediated decellularization and initial in vitro recellularization with mesenchymal stem cells. Tissue Eng Part A. 2012;18:2437–52.

    Google Scholar 

  82. Nichols JE, Niles J, Riddle M, Vargas G, Schilagard T, Ma L, et al. Production and assessment of decellularized pig and human lung scaffolds. Tissue Eng Part A. 2013;19:2045–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. O’Neill JD, Anfang R, Anandappa A, Costa J, Javidfar J, Wobma HM, et al. Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann Thorac Surg. 2013;96:1046–56.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Vorotnikova E, McIntosh D, Dewilde A, Zhang J, Reing JE, Zhang L, et al. Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vivo. Matrix Biol. 2010;29:690–700.

    Article  CAS  PubMed  Google Scholar 

  85. Murray JC, Liotta L, Rennard SI, Martin GR. Adhesion characteristics of murine metastatic and nonmetastatic tumor cells in vitro. Cancer Res. 1980;40:347–51.

    Google Scholar 

  86. Clark RA, Nielsen LD, Welch MP, McPherson JM. Collagen matrices attenuate the collagen-synthetic response of cultured fibroblasts to TGF-beta. J Cell Sci. 1995;108:1251.

    Article  CAS  PubMed  Google Scholar 

  87. Balestrini JL, Gard AL, Gerhold KA, Wilcox EC, Liu A, Schwan J, et al. Comparative biology of decellularized lung matrix: implications of species mismatch in regenerative medicine. Biomaterials. 2016;102:220–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bonenfant NR, Sokocevic D, Wagner DE, Borg ZD, Lathrop MJ, Lam YW, et al. The effects of storage and sterilization on de-cellularized and re-cellularized whole lung. Biomaterials. 2013;34:3231–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wagner DE, Bonenfant NR, Parsons CS, Sokocevic D, Brooks EM, Borg ZD, et al. Comparative decellularization and recellularization of normal versus emphysematous human lungs. Biomaterials. 2014;35:3281–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Scarritt ME, Bonvillain RW, Burkett BJ, Wang G, Glotser EY, Zhang Q, et al. Hypertensive rat lungs retain hallmarks of vascular disease upon decellularization but support the growth of mesenchymal stem cells. Tissue Eng Part A. 2014;20:1426–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nichols JE, La Francesca S, Vega SP, Niles JA, Argueta LB, Riddle M, et al. Giving new life to old lungs: methods to produce and assess whole human paediatric bioengineered lungs. J Tissue Eng Regen Med. 2017;11:2136–52.

    Article  CAS  PubMed  Google Scholar 

  92. Stahl EC, Bonvillain RW, Skillen CD, Burger BL, Hara H, Lee W, et al. Evaluation of the host immune response to decellularized lung scaffolds derived from α-gal knockout pigs in a non-human primate model. Biomaterials. 2018;187:93–104.

    Article  CAS  PubMed  Google Scholar 

  93. Reing JE, Brown BN, Daly KA, Freund JM, Gilbert TW, Hsiong SX, et al. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials. 2010;31:8626–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Maghsoudlou P, Georgiades F, Tyraskis A, Totonelli G, Loukogeorgakis SP, Orlando G, et al. Preservation of micro-architecture and angiogenic potential in a pulmonary acellular matrix obtained using intermittent intra-tracheal flow of detergent enzymatic treatment. Biomaterials. 2013;34:6638–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang Z, Wang Z, Yu Q, Xi H, Weng J, Du X, et al. Comparative study of two perfusion routes with different flow in decellularization to harvest an optimal pulmonary scaffold for recellularization. J Biomed Mater Res A. 2016;104:2567–75.

    Article  CAS  PubMed  Google Scholar 

  96. Uriarte JJ, Nonaka PN, Campillo N, Palma RK, Melo E, de Oliveira LVF, et al. Mechanical properties of acellular mouse lungs after sterilization by gamma irradiation. J Mech Behav Biomed Mater. 2014;40:168–77.

    Article  PubMed  Google Scholar 

  97. Nonaka PN, Campillo N, Uriarte JJ, Garreta E, Melo E, de Oliveira LVF, et al. Effects of freezing/thawing on the mechanical properties of decellularized lungs. J Biomed Mater Res A. 2014;102:413–9.

    Article  PubMed  Google Scholar 

  98. Calle EA, Hill RC, Leiby KL, Le AV, Gard AL, Madri JA, et al. Targeted proteomics effectively quantifies differences between native lung and detergent-decellularized lung extracellular matrices. Acta Biomater. 2016;46:91–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Linhardt RJ, Toida T. Role of glycosaminoglycans in cellular communication. Acc Chem Res. 2004;37:431–8.

    Article  CAS  PubMed  Google Scholar 

  100. Schultz V, Suflita M, Liu X, Zhang X, Yu Y, Li L, et al. Heparan sulfate domains required for fibroblast growth factor 1 and 2 Signaling through fibroblast growth factor receptor 1c. J Biol Chem. 2017;292:2495–509.

    Article  CAS  PubMed  Google Scholar 

  101. Gilpin SE, Wagner DE. Acellular human lung scaffolds to model lung disease and tissue regeneration. Eur Respir Rev. 2018;27:180021.

    Article  PubMed  Google Scholar 

  102. da Palma RK, Fratini P, Schiavo Matias GS, Cereta AD, Guimarães LL, Anunciação ARDA, et al. Equine lung decellularization: a potential approach for in vitro modeling the role of the extracellular matrix in asthma. J Tiss Eng. 2018;9:2041731418810164.

    Google Scholar 

  103. Nichols WG, Steel HM, Bonny T, Adkison K, Curtis L, Millard J, et al. Hepatotoxicity observed in clinical trials of aplaviroc (GW873140). Antimicrob Agents Chemother. 2008;52:858–65.

    Article  CAS  PubMed  Google Scholar 

  104. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2015;385:117–71.

    Google Scholar 

  105. Moore FD, Smith LL, Burnap TK, Dallenbach FD, Dammin GJ, Gruber UF, et al. One-stage homotransplantation of the liver following total hepatectomy in dogs. Transplant Bull. 1959;6:103–7.

    Article  CAS  PubMed  Google Scholar 

  106. Starzl TE, Marchioro TL, Vonkaulla KN, Hermann G, Brittain RS, Waddell WR. Homotransplantation of the liver in humans. Surg Gynecol Obstet. 1963;117:659–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Hannoun Z, Steichen C, Dianat N, Weber A, Dubart-Kupperschmitt A. The potential of induced pluripotent stem cell derived hepatocytes. J Hepatol. 2016;65:182–99.

    Article  CAS  PubMed  Google Scholar 

  108. Marinho A. A study on organ transplantation waiting lines in Brazil’s unified national health system. Cad Saude Publica. 2006;22:2229–39.

    Article  PubMed  Google Scholar 

  109. Chen AA, Thomas DK, Ong LL, Schwartz RE, Golub TR, Bhatia SN. Humanized mice with ectopic artificial liver tissues. Proc Natl Acad Sci U S A. 2011;108:11842–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dhawan A, Puppi J, Hughes RD, Mitry RR. Human hepatocyte transplantation: current experience and future challenges. Nat Rev Gastroenterol Hepatol. 2010;7:288–98.

    Article  PubMed  Google Scholar 

  111. Lee CA, Dhawan A, Smith RA, Mitry RR, Fitzpatrick E. Instant blood-mediated inflammatory reaction in hepatocyte transplantation: current status and future perspectives. Cell Transplant. 2016;25:1227–36.

    Article  PubMed  Google Scholar 

  112. Zhang J, Zhao X, Liang L, Li J, Demirci U, Wang S. A decade of progress in liver regenerative medicine. Biomaterials. 2018;157:161–76.

    Article  CAS  PubMed  Google Scholar 

  113. Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32(8):760–72.

    Google Scholar 

  114. Uygun BE, Soto-Gutierrez A, Yagi H, Izamis M-L, Guzzardi MA, Shulman C, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16:814–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Shupe T, Williams M, Brown A, Willenberg B, Petersen BE. Method for the decellularization of intact rat liver. Organogenesis. 2010;6:134–6.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev. 2009;61:198–223.

    Article  PubMed  PubMed Central  Google Scholar 

  117. De Kock J, Ceelen L, De Spiegelaere W, Casteleyn C, Claes P, Vanhaecke T, et al. Simple and quick method for whole-liver decellularization: a novel in vitro three-dimensional bioengineering tool? Arch Toxicol. 2011;85:607–12.

    Article  PubMed  Google Scholar 

  118. Ren H, Shi X, Tao L, Xiao J, Han B, Zhang Y, et al. Evaluation of two decellularization methods in the development of a whole-organ decellularized rat liver scaffold. Liver Int. 2013;33:448–58.

    Article  CAS  PubMed  Google Scholar 

  119. Jiang WC, Cheng YH, Yen MH, Chang Y, Yang VW, Lee OK. Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering. Biomaterials. 2014;35:3607–17.

    Google Scholar 

  120. Mattei G, Di Patria V, Tirella A, Alaimo A, Elia G, Corti A, et al. Mechanostructure and composition of highly reproducible decellularized liver matrices. Acta Biomater. 2014;10:875–82.

    Article  CAS  PubMed  Google Scholar 

  121. Gómez MP, Pérez B, Manyalich M. International registry in organ donation and transplantation—2013. Transplant Proc. 2014;46:1044–8.

    Article  PubMed  Google Scholar 

  122. Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials. 2000;21:2215–31.

    Article  CAS  PubMed  Google Scholar 

  123. Wang Y, Bao J, Wu X, Wu Q, Li Y, Zhou Y, et al. Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization. Sci Rep. 2016;6:24779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Struecker B, Butter A, Hillebrandt K, Polenz D, Reutzel-Selke A, Tang P, et al. Improved rat liver decellularization by arterial perfusion under oscillating pressure conditions. J Tissue Eng Regen Med. 2017;11:531–41.

    Article  CAS  PubMed  Google Scholar 

  125. Willemse J, Verstegen MMA, Vermeulen A, Schurink IJ, Roest HP, van der Laan LJW, et al. Fast, robust and effective decellularization of whole human livers using mild detergents and pressure controlled perfusion. Mater Sci Eng C Mater Biol Appl. 2020;108:110200.

    Google Scholar 

  126. Mani NS, Manoj MG, Malik A. Concurrent renal tuberculosis and renal cell carcinoma: A coincidental finding. Indian J Nephrol. 2013;23:237.

    Google Scholar 

  127. Schieppati A, Remuzzi G. Chronic renal diseases as a public health problem: epidemiology, social, and economic implications. Kidney Int Suppl. 2005;68:S7–10.

    Google Scholar 

  128. Mann BS, Manns BJ, Barnieh L, Oliver MJ, Devoe D, Lorenzetti D, et al. Peritoneal dialysis: a scoping review of strategies to maximize PD utilization. Perit Dial Int. 2017;37:159–64.

    Google Scholar 

  129. Chacko MP, Mathan A, Daniel D, Basu G, Varughese S. Significance of pre-transplant anti-HLA antibodies detected on an ELISA mixed antigen tray platform. Indian J Nephrol. 2013;23:351–3.

    Google Scholar 

  130. Anil Kumar BN, Mattoo SK. Organ transplant & the psychiatrist: an overview. Indian J Med Res. 2015;141:408–16.

    Google Scholar 

  131. Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med. 2013;19:646–51.

    Google Scholar 

  132. Hussein KH, Park KM, Lee YS, Woo JS, Kang BJ, Choi KY, et al. New insights into the pros and cons of cross-linking decellularized bioartificial organs. Int J Artif Organs. 2017;40:136–41.

    Google Scholar 

  133. Ross EA, Williams MJ, Hamazaki T, Terada N, Clapp WL, Adin C, et al. Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol. 2009;20:2338–47.

    Google Scholar 

  134. Caralt M, Uzarski JS, Iacob S, Obergfell KP, Berg N, Bijonowski BM, et al. Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation. Am J Transplant. 2015;15:64–75.

    Google Scholar 

  135. Chani B, Puri V, Sobti RC, Jha V, Puri S. Decellularized scaffold of cryopreserved rat kidney retains its recellularization potential. PLoS One. 2017;12:e0173040.

    Google Scholar 

  136. Feng H, Xu Y, Luo S, Dang H, Liu K, Sun WQ. Evaluation and preservation of vascular architectures in decellularized whole rat kidneys. Cryobiology. 2020;95:72–9.

    Google Scholar 

  137. Nakayama KH, Batchelder CA, Lee CI, Tarantal AF. Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A. 2010;16:2207–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nakayama KH, Lee CC, Batchelder CA, Tarantal AF. Tissue specificity of decellularized rhesus monkey kidney and lung scaffolds. PLoS One. 2013;8:e64134.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Nakayama KH, Batchelder CA, Lee CI, Tarantal AF. Renal tissue engineering with decellularized rhesus monkey kidneys: age-related differences. Tissue Eng Part A. 2011;17:2891–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hussein KH, Saleh T, Ahmed E, Kwak HH, Park KM, Yang SR, et al. Biocompatibility and hemocompatibility of efficiently decellularized whole porcine kidney for tissue engineering. J Biomed Mater Res A. 2018;106:2034–47.

    Google Scholar 

  141. Poornejad N, Momtahan N, Salehi AS, Scott DR, Fronk CA, Roeder BL, et al. Efficient decellularization of whole porcine kidneys improves reseeded cell behavior. Biomed Mater. 2016;11(2):025003.

    Google Scholar 

  142. Gifford S, Zambon JP, Orlando G. Recycling organs-growing tailor-made replacement kidneys. Regen Med. 2015;10:913–5.

    Google Scholar 

  143. Orlando G, Booth C, Wang Z, Totonelli G, Ross CL, Moran E, et al. Discarded human kidneys as a source of ECM scaffold for kidney regeneration technologies. Biomaterials. 2013;34:5915–25.

    Google Scholar 

  144. Peloso A, Petrosyan A, Da Sacco S, Booth C, Zambon JP, OʼBrien T, et al. Renal extracellular matrix scaffolds from discarded kidneys maintain glomerular morphometry and vascular resilience and retains critical growth factors. Transplantation. 2015;99:1807–16.

    Google Scholar 

  145. Baptista PM, Orlando G, Mirmalek-Sani SH, Siddiqui M, Atala A, Soker S. Whole organ decellularization - a tool for bioscaffold fabrication and organ bioengineering. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6526-9.

    Google Scholar 

  146. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–7.

    Google Scholar 

  147. Destefani AC, Sirtoli GM, Nogueira BV. Advances in the Knowledge about Kidney Decellularization and Repopulation. Front Bioeng Biotechnol. 2017;5:34.

    Google Scholar 

  148. Mayorca-Guiliani AE, Madsen CD, Cox TR, Horton ER, Venning FA, Erler JT. ISDoT: in situ decellularization of tissues for high-resolution imaging and proteomic analysis of native extracellular matrix. Nat Med. 2017;23:890–8.

    Google Scholar 

  149. Kajbafzadeh AM, Khorramirouz R, Nabavizadeh B, Ladi Seyedian SS, Akbarzadeh A, Heidari R, et al. Whole organ sheep kidney tissue engineering and in vivo transplantation: effects of perfusion-based decellularization on vascular integrity. Mater Sci Eng C Mater Biol Appl. 2019;98:392–400.

    Google Scholar 

  150. Parmaksiz M, Dogan A, Odabas S, Elçin AE, Elçin YM. Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Biomed Mater. 2016;11:022003.

    Article  PubMed  Google Scholar 

  151. Kadish AH. Automation control of blood sugar. I. A servomechanism for glucose monitoring and control. Am J Med Electron. 1964;3:82–6.

    Google Scholar 

  152. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343:230–8. 

    Google Scholar 

  153. Goh SK, Bertera S, Olsen P, Candiello JE, Halfter W, Uechi G, et al. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials. 2013;34:6760–72.

    Google Scholar 

  154. Rogers J, Farney AC, Al-Geizawi S, Iskandar SS, Doares W, Gautreaux MD, et al. Pancreas transplantation: lessons learned from a decade of experience at Wake Forest Baptist Medical Center. Rev Diab Stud. 2011;8:17–27.

    Google Scholar 

  155. Yang HK, Yoon KH. Current status of encapsulated islet transplantation. J Diabetes Complicat. 2015;29:737–43.

    Google Scholar 

  156. Scarritt ME, Pashos NC, Bunnell BA. A review of cellularization strategies for tissue engineering of whole organs. Front Bioeng Biotechnol. 2015;3:43.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Zhang Y, Jalili RB, Warnock GL, Ao Z, Marzban L, Ghahary A. Three-dimensional scaffolds reduce islet amyloid formation and enhance survival and function of cultured human islets. Am J Pathol. 2012;181:1296–305.

    Article  CAS  PubMed  Google Scholar 

  158. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675–83.

    CAS  PubMed  Google Scholar 

  159. De Carlo E, Baiguera S, Conconi MT, Vigolo S, Grandi C, Lora S, et al. Pancreatic acellular matrix supports islet survival and function ina synthetic tubular device: in vitro and in vivo studies. Int J Mol Med. 2010;25:195–202.

    Google Scholar 

  160. Kuna VK, Kvarnström N, Elebring E, Holgersson SS. Isolation and decellularization of a whole porcine pancreas. J Vis Exp. 2018:e58302.

    Google Scholar 

  161. Peloso A, Urbani L, Cravedi P, Katari R, Maghsoudlou P, Fallas ME, et al. The human pancreas as a source of protolerogenic extracellular matrix scaffold for a new-generation bioartificial endocrine pancreas. Ann Surg. 2016;264:169–79.

    Google Scholar 

  162. Huang YB, Mei J, Yu Y, Ding Y, Xia W, Yue T, et al. Comparative decellularization and recellularization of normal versus streptozotocin-induced diabetes mellitus rat pancreas. Artif Organs. 2019;43:399–412.

    Google Scholar 

  163. Wu D, Wan J, Huang Y, Guo Y, Xu T, Zhu M, et al. 3D culture of MIN-6 cells on decellularized pancreatic scaffold: in vitro and in vivo study. Biomed Res Int. 2015;2015:432645.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Dew L, MacNeil S, Chong CK. Vascularization strategies for tissue engineers. Regen Med. 2015;10:211–24.

    Google Scholar 

  165. Gittes GK. Developmental biology of the pancreas: a comprehensive review. Dev Biol. 2009;326:4–35.

    Article  CAS  PubMed  Google Scholar 

  166. Hegyi P, Petersen OH. The exocrine pancreas: the acinar-ductal tango in physiology and pathophysiology. Rev Physiol Biochem Pharmacol. 2013;165:1–30.

    Google Scholar 

  167. Mikhailova AG, Rumsh LD, Dalgalarrondo M, Chobert JM, Haertle T. Activities of anionic and cationic trypsins in the temperature range from 5 to 37 degrees C. Mutant anionic trypsins as a model of cold-adapted (psychrophilic) enzymes. Biochemistry (Mosc). 2003;68:926–33.

    Google Scholar 

  168. Nichols SP, Koh A, Brown NL, Rose MB, Sun B, Slomberg DL, et al. The effect of nitric oxide surface flux on the foreign body response to subcutaneous implants. Biomaterials. 2012;33:6305–12.

    Google Scholar 

  169. Mantovani A, Sica A, Locati M. Macrophage polarization comes of age. Immunity. 2005;23:344–6.

    Google Scholar 

  170. Valentin JE, Stewart-Akers AM, Gilbert TW, Badylak SF. Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds. Tissue Eng Part A. 2009;15:1687–94.

    Google Scholar 

  171. Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials. 2009;30:1482–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Matsumoto T, Holmes RH, Burdick CO, Metzger JF, Heisterkamp CA 3rd, O'Connell TJ Jr. A study of inverted intestinal graft in the major veins. Angiology. 1966;17:842–50.

    Google Scholar 

  173. Totonelli G, Maghsoudlou P, Garriboli M, Riegler J, Orlando G, Burns AJ, et al. A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration. Biomaterials. 2012;33:3401–10.

    Google Scholar 

  174. Maghsoudlou P, Totonelli G, Loukogeorgakis SP, Eaton S, De Coppi P. A decellularization methodology for the production of a natural acellular intestinal matrix. J Vis Exp. 2013:e50658.

    Google Scholar 

  175. Patil PB, Chougule PB, Kumar VK, Almström S, Bäckdahl H, Banerjee D, et al. Recellularization of acellular human small intestine using bone marrow stem cells. Stem Cells Transl Med. 2013;2:307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Nowocin AK, Southgate A, Gabe SM, Ansari T. Biocompatibility and potential of decellularized porcine small intestine to support cellular attachment and growth. J Tissue Eng Regen Med. 2016;10:E23–33.

    Google Scholar 

  177. Dew L, English WR, Chong CK, MacNeil S. Investigating neovascularization in rat decellularized intestine: an in vitro platform for studying angiogenesis. Tissue Eng Part A. 2016;22:1317–26.

    Google Scholar 

  178. Urbani L, Camilli C, Phylactopoulos DE, Crowley C, Natarajan D, Scottoni F, et al. Multi-stage bioengineering of a layered oesophagus with in vitro expanded muscle and epithelial adult progenitors. Nat Commun. 2018;9:4286.

    Google Scholar 

  179. Piccoli M, D’Angelo E, Crotti S, Sensi F, Urbani L, Maghin E, et al. Decellularized colorectal cancer matrix as bioactive microenvironment for in vitro 3D cancer research. J Cell Physiol. 2018;233:5937–48.

    Article  CAS  PubMed  Google Scholar 

  180. Kajbafzadeh AM, Khorramirouz R, Masoumi A, Keihani S, Nabavizadeh B. Decellularized human fetal intestine as a bioscaffold for regeneration of the rabbit bladder submucosa. J Pediatr Surg. 2018;53:1781–8.

    Google Scholar 

  181. Giuffrida P, Curti M, Al-Akkad W, Biel C, Crowley C, Frenguelli L, et al. Decellularized human gut as a natural 3D platform for research in intestinal fibrosis. Inflamm Bowel Dis. 2019;25:1740–50.

    Google Scholar 

  182. Chen HJ, Shuler ML. Engineering a bioartificial human colon model through decellularization and recellularization. Methods Mol Biol. 2019;1907:91–102.

    Article  CAS  PubMed  Google Scholar 

  183. Gosztyla C, Ladd MR, Werts A, Fulton W, Johnson B, Sodhi C, et al. A comparison of sterilization techniques for production of decellularized intestine in mice. Tissue Eng Part C Methods. 2020;26:67–79.

    Google Scholar 

  184. Cao G, Huang Y, Li K, Fan Y, Xie H, Li X. Small intestinal submucosa: superiority, limitations and solutions, and its potential to address bottlenecks in tissue repair. J Mater Chem B. 2019;7:5038–55.

    Google Scholar 

  185. Stanton AL, Lobel M, Sears S, DeLuca RS. Psychosocial aspects of selected issues in women’s reproductive health: current status and future directions. J Consult Clin Psychol. 2002;70:751–70.

    Google Scholar 

  186. Hellström M, Bandstein S, Brännström M. Uterine tissue engineering and the future of uterus transplantation. Ann Biomed Eng. 2017;45:1718–30.

    Google Scholar 

  187. Santoso EG, Yoshida K, Hirota Y, Aizawa M, Yoshino O, Kishida A, et al. Application of detergents or high hydrostatic pressure as decellularization processes in uterine tissues and their subsequent effects on in vivo uterine regeneration in murine models. PLoS One. 2014;9:e103201.

    Google Scholar 

  188. Hellström M, El-Akouri RR, Sihlbom C, Olsson BM, Lengqvist J, Bäckdahl H, et al. Towards the development of a bioengineered uterus: comparison of different protocols for rat uterus decellularization. Acta Biomater. 2014;10:5034–42.

    Google Scholar 

  189. Campo H, Baptista PM, López-Pérez N, Faus A, Cervelló I, Simón C. De- and recellularization of the pig uterus: a bioengineering pilot study. Biol Reprod. 2017;96:34–45.

    Google Scholar 

  190. Padma AM, Tiemann TT, Alshaikh AB, Akouri R, Song MJ, Hellström M. Protocols for rat uterus isolation and decellularization: applications for uterus yissue engineering and 3D cell culturing. Methods Mol Biol. 2018;1577:161–75.

    Google Scholar 

  191. Miki F, Maruyama T, Miyazaki K, Takao T, Yoshimasa Y, Katakura S, et al. The orientation of a decellularized uterine scaffold determines the tissue topology and architecture of the regenerated uterus in rats. Biol Reprod. 2019;100:1215–27.

    Google Scholar 

  192. Daryabari SS, Kajbafzadeh AM, Fendereski K, Ghorbani F, Dehnavi M, Rostami M, et al. Correction to: development of an efficient perfusion-based protocol for whole-organ decellularization of the ovine uterus as a human-sized model and in vivo application of the bioscaffolds. J Assist Reprod Genet. 2020;37:491.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, Y., Yue, H., Lian, Z., Li, X. (2021). The Decellularization of Whole Organs. In: Li, X., Xie, H. (eds) Decellularized Materials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6962-7_5

Download citation

Publish with us

Policies and ethics